Identifying plant mixes for multiple ecosystem service provision in agricultural systems using ecological networks

1. Managing agricultural environments in a way that maximises the provision of multiple ecosystem services is a significant challenge in the development of sustainable and secure food systems. Advances in network ecology provide a way forward, particularly in arable landscapes, as they incorporate m...

Descripción completa

Detalles Bibliográficos
Otros Autores: Windsor, Fredric M., Tavella, Julia, Rother, Débora C., Raimundo, Rafael L. G., Devoto, Mariano, Guimarães Jr., Paulo R., Evans, Darren M.
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2021windsor.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04481cab a22004337a 4500
001 20220916104404.0
003 AR-BaUFA
005 20230607105646.0
008 220916t2021 xxkad|||o|||| 00| 0 eng d
999 |c 54967  |d 54967 
999 |d 54967 
999 |d 54967 
999 |d 54967 
022 |a 0021-8901 
024 |a 10.1111/1365-2664.14007 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a Identifying plant mixes for multiple ecosystem service provision in agricultural systems using ecological networks 
520 |a 1. Managing agricultural environments in a way that maximises the provision of multiple ecosystem services is a significant challenge in the development of sustainable and secure food systems. Advances in network ecology provide a way forward, particularly in arable landscapes, as they incorporate mutualistic and antagonistic interactions associated with crop production. 2. Here, we present an approach to identify mixes of non-crop plant species that provide multiple ecosystem services while minimising disservices. Genetic algorithms were applied to the Norwood Farm ecological network—a comprehensive dataset of antagonistic and mutualistic species interactions on an organic farm in the United Kingdom. We aimed to show how network analyses can be used to select plants supporting a high diversity of insect pollinators and parasitoids of insect pests, but low diversity of herbivores. Further to this, we wanted to understand the trade-offs in ecosystem service provision associated with conventional management practices that focus on individual ecosystem services. 3. We show that multilayer network analyses can be used to identify mixes of plant species that maximise the species richness of pollinators and parasitoids (natural enemies of insect pests), while minimising the species richness of herbivores. 4. Trade-offs between ecosystem processes were apparent with several plant species associated with a high species richness of both positive (pollinators and parasitoids) and negative (herbivores) functional taxonomic groups. As a result, optimal plant species mixes for individual ecosystem services were different from the mix simultaneously maximising pollination and parasitism of pest insects, while minimising herbivory. 5. Synthesis and applications. Plant mixes designed solely for maximising pollinator species richness are not optimal for the provision of other ecosystem services and disservices (e.g. parasitism of insect pests and herbivory). The method presented here will allow for the design of management strategies that facilitate the provision of multiple ecosystem services. To this end, we provide a protocol for practitioners to develop their own plant mixes suitable for farm-scale management. This avenue of predictive network ecology has the potential to enhance agricultural management, supporting high levels of biodiversity and food production by manipulating ecological networks in specific ways. 
650 |2 Agrovoc  |9 26 
653 |a BIOCONTROL 
653 |a ECOSYSTEM SERVICES 
653 |a NETWORK ECOLOGY 
653 |a PLANTS 
653 |a POLLINATORS 
653 |a SPECIES INTERACTIONS 
653 |a SUSTAINABLE AGRICULTURE 
700 1 |a Windsor, Fredric M.  |u Newcastle University. School of Natural and Environmental Sciences. Newcastle upon Tyne, UK.  |9 74044 
700 1 |a Tavella, Julia  |u Universidad de Buenos Aires. Facultad de Agronomía. Buenos Aires, Argentina.  |9 73286 
700 1 |a Rother, Débora C.  |u Universidade de São Paulo. Departamento de Ecologia. São Paulo, Brazil.  |9 74045 
700 1 |a Raimundo, Rafael L. G.  |u Universidade Federal da Paraíba. Departamento de Engenharia e Meio Ambiente. Joao Pessoa, Brazil.  |9 74046 
700 1 |a Devoto, Mariano  |u Universidad de Buenos Aires. Facultad de Agronomía. Buenos Aires, Argentina.  |9 11883 
700 1 |a Guimarães Jr., Paulo R.  |u Universidade de São Paulo. Departamento de Ecologia. São Paulo, Brazil.  |9 74047 
700 1 |a Evans, Darren M.  |u Newcastle University. School of Natural and Environmental Sciences. Newcastle upon Tyne, UK.  |9 74048 
773 0 |t Journal of applied ecology  |w SECS000109  |g Vol.58, no.12 (2021), p.2770–2782, il., tbls., grafs. 
856 |f 2021windsor  |i En reservorio  |q application/pdf  |u http://ri.agro.uba.ar/files/intranet/articulo/2021windsor.pdf  |x ARTI202210 
856 |u http://www.britishecologicalsociety.org/  |z LINK AL EDITOR 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG