Formation of redox-active self-assembled polyelectrolyte-surfactant complexes integrating glucose oxidase on electrodes: Influence of the self-assembly solvent on the signal generation

In this work the effects of the self-assembly solvent on the structure and electrochemical behavior of redox-active polyelectrolyte-surfactant complexes cast on electrode supports from aqueous and DMF solutions are presented. The complex studied is formed by complexation of osmium complex-modified p...

Descripción completa

Detalles Bibliográficos
Autor principal: Cortez, M.L
Otros Autores: Ceolín, Marcelo Raúl, Azzaroni, O., Battaglini, Fernando
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:In this work the effects of the self-assembly solvent on the structure and electrochemical behavior of redox-active polyelectrolyte-surfactant complexes cast on electrode supports from aqueous and DMF solutions are presented. The complex studied is formed by complexation of osmium complex-modified polyallylamine (OsPA) with dodecyl sulfate (DS) surfactants. The structure of the films was characterized by GISAXS, showing that films present a lamellar mesostructure. However, when they are exposed to humid environments, films cast from aqueous solutions (OsPA-DSaq) undergo a structural transition that ultimately leads to the disappearance of the mesostructural order. On the other hand, OsPA-DS films cast from DMF solutions (OsPA-DSorg) revealed no significant changes upon exposure to humid environments. Both types of films were exposed to glucose oxidase (GOx), showing similar adsorption characteristics. Notwithstanding these similarities in GOx and content, OsPA-DSaq films revealed a more sensitive bioelectrocatalytical response to glucose as compared to OsPA-DSorg films. © 2015 Elsevier B.V.
Bibliografía:Stuart, M.A.C., Huck, W.T.S., Genzer, J., Müller, M., Ober, C., Stamm, M., Sukhorukov, G.B., Minko, S., Emerging applications of stimuli-responsive polymer materials (2010) Nat. Mater., 9, pp. 101-113
Katz, E., Minko, S., Halámek, J., MacVittie, K., Yancey, K., Electrode interfaces switchable by physical and chemical signals for biosensing, biofuel, and biocomputing applications (2013) Anal. Bioanal. Chem., 405, pp. 3659-3672
Beitollahi, H., Sheikhshoaie, I., Selective voltammetric determination of norepinephrine in the presence of acetaminophen and folic acid at a modified carbon nanotube paste electrode (2011) J. Electroanal. Chem., 661, pp. 336-342
Beitollahi, H., Sheikhshoaie, I., Electrocatalytic and simultaneous determination of isoproterenol, uric acid and folic acid at molybdenum (VI) complex-carbon nanotube paste electrode (2011) Electrochim. Acta, 56, pp. 10259-10263
Rubianes, M.D., Rivas, G.A., Dispersion of multi-wall carbon nanotubes in polyethylenimine: a new alternative for preparing electrochemical sensors (2007) Electrochem. Commun., 9, pp. 480-484
Cortez, M.L., Ceolín, M., Azzaroni, O., Battaglini, F., Electrochemical sensing platform based on polyelectrolyte-surfactant supramolecular assemblies incorporating carbon nanotubes (2011) Anal. Chem., 83, pp. 8011-8018
Molaakbari, E., Mostafavi, A., Beitollahi, H., Alizadeh, R., Synthesis of ZnO nanorods and their application in the construction of a nanostructure-based electrochemical sensor for determination of levodopa in the presence of carbidopa (2014) Analyst, 139, pp. 4356-4364
Narang, J., Malhotra, N., Singh, G., Pundir, C.S., Electrochemical impedimetric detection of anti-HIV drug taking gold nanorods as a sensing interface (2015) Biosens. Bioelectron., 66, pp. 332-337
Zhang, X., Zhang, F., Zhang, H., Shen, J., Han, E., Dong, X., Functionalized gold nanorod-based labels for amplified electrochemical immunoassay of E. coli as indicator bacteria relevant to the quality of dairy product (2015) Talanta, 132, pp. 600-605
Cortez, M.L., Marmisollé, W., Pallarola, D., Pietrasanta, L.I., Murgida, D.H., Ceolín, M., Azzaroni, O., Battaglini, F., Effect of gold nanoparticles on the structure and electron-transfer characteristics of glucose oxidase redox polyelectrolyte-surfactant complexes (2014) Chem. Eur. J., 20, pp. 13366-13374
Peinetti, A.S., Ceretti, H., Mizrahi, M., González, G.A., Ramírez, S.A., Requejo, F.G., Montserrat, J.M., Battaglini, F., Confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors (2015) Nanoscale, 7, pp. 7763-7769
Yue, Z., Lisdat, F., Parak, W.J., Hickey, S.G., Tu, L., Sabir, N., Dorfs, D., Bigall, N.C., Quantum-dot-based photoelectrochemical sensors for chemical and biological detection (2013) ACS Appl. Mater. Interfaces, 5, pp. 2800-2814
Golub, E., Pelossof, G., Freeman, R., Zhang, H., Willner, I., Electrochemical, pho-toelectrochemical, and surface plasmon resonance detection of cocaine using supramolecular aptamer complexes and metallic or semiconductor nanoparticles (2009) Anal. Chem., 81, pp. 9291-9298
Lutkenhaus, J.L., Hammond, P.T., Electrochemically enabled polyelectrolyte multilayer devices: from fuel cells to sensors (2007) Soft Matter, 3, pp. 804-816
Cortez, M.L., Pallarola, D., Ceolín, M., Azzaroni, O., Battaglini, F., Ionic self-assembly of electroactive biorecognizable units: electrical contacting of redox glycoenzymes made easy (2012) Chem. Commun., 48, pp. 10868-10870
Calvo, E.J., Flexer, V., Tagliazucchi, M., Scodeller, P., Effects of the nature and charge of the topmost layer in layer by layer self assembled amperometric enzyme electrodes (2010) Phys. Chem. Chem. Phys., 12, pp. 10033-10039
Betscha, C., Ball, V., Large distribution in the Donnan potential of hexacyanoferrate anions permeating in and partially dissolving (PAH-HA)n polyelectrolyte multilayer films (2011) Soft Matter, 7, pp. 1819-1829
Tagliazucchi, M., Williams, F.J., Calvo, E.J., Metal-ion responsive redox polyelectrolyte multilayers (2010) Chem. Commun., 46, pp. 9004-9006
Massafera, M.P., de Torresi, S.I.C., Urea amperometric biosensors based on nanostructured polypyrrole (2011) Electroanalysis, 23, pp. 2534-2540
Hasan, K., Patil, S.A., Górecki, K., Leech, D., Hägerhäll, C., Gorton, L., Electrochemical communication between heterotrophically grown Rhodobacter capsulatus with electrodes mediated by an osmium redox polymer (2013) Bioelectrochemistry, 93, pp. 30-36
Mano, N., Mao, F., Heller, A., A miniature biofuel cell operating in a physiological buffer (2002) J. Am. Chem. Soc., 124, pp. 12962-12963
Taylor, A.D., Michel, M., Sekol, R.C., Kizuka, J.M., Kotov, N.A., Thompson, L.T., Fuel cell membrane electrode assemblies fabricated by layer-by-layer electrostatic self-assembly techniques (2008) Adv. Funct. Mater., 18, pp. 3003-3009
Koodlur, L.S., Layer-by-layer self assembly of a water-soluble phthalocyanine on gold. Application to the electrochemical determination of hydrogen peroxide (2013) Bioelectrochemistry, 91, pp. 21-27
Wu, B.Y., Hou, S.H., Yin, F., Zhao, Z.X., Wang, Y.Y., Wang, X.S., Chen, Q., Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode (2007) Biosens. Bioelectron., 22, pp. 2854-2860
Iost, R.M., Crespilho, F.N., Layer-by-layer self-assembly and electrochemistry: applications in biosensing and bioelectronics (2012) Biosens. Bioelectron., 31, pp. 1-10
Heller, A., Feldman, B., Electrochemistry in diabetes management (2010) Acc. Chem. Res., 43, pp. 963-973
Merchant, S.A., Glatzhofer, D.T., Schmidtke, D.W., Effects of electrolyte and pH on the behavior of cross-linked films of ferrocene-modified poly(ethylenimine) (2007) Langmuir, 23, pp. 11295-11302
Cortez, M.L., González, G.A., Battaglini, F., An electroactive versatile matrix for the construction of sensors (2011) Electroanalysis, 23, pp. 156-160
Cortez, M.L., Pallarola, D., Ceolín, M., Azzaroni, O., Battaglini, F., Electron transfer properties of dual self-assembled architectures based on specific recognition and electrostatic driving forces: its application to control substrate inhibition in horseradish peroxidase-based sensors (2013) Anal. Chem., 85, pp. 2414-2422
Peinetti, A.S., Méndez De Leo, L.P., González, G.A., Battaglini, F., A polyelectrolyte-surfactant complex as support layer for membrane functionalization (2012) J. Colloid Interface Sci., 386, pp. 44-50
Bazylińska, U., Skrzela, R., Piotrowski, M., Szczepanowicz, K., Warszyński, P., Wilk, K.A., Influence of dicephalic ionic surfactant interactions with oppositely charged polyelectrolyte upon the in vitro dye release from oil core nanocapsules (2012) Bioelectrochemistry, 87, pp. 147-153
Liu, J.Y., Wang, J.G., Li, N., Zhao, H., Zhou, H.J., Sun, P.C., Chen, T.H., Polyelectrolyte-surfactant complex as a template for the synthesis of zeolites with intracrystalline mesopores (2012) Langmuir, 28, pp. 8600-8607
Cortez, M.L., González, G.A., Ceolín, M., Azzaroni, O., Battaglini, F., Self-assembled redox polyelectrolyte-surfactant complexes: nanostructure and electron transfer characteristics of supramolecular films with built-in electroactive chemical functions (2014) Electrochim. Acta, 118, pp. 124-129
Danilowicz, C., Corton, E., Battaglini, F., Osmium complexes bearing functional groups: building blocks for integrated chemical systems (1998) J. Electroanal. Chem., 445, pp. 89-94
Cortez, M.L., Cukierman, A.L., Battaglini, F., Surfactant presence in a multilayer polyelectrolyte-enzyme system improves its catalytic response (2009) Electrochem. Commun., 11, pp. 990-993
Flexer, V., Forzani, E.S., Calvo, E.J., Ludueña, S.J., Pietrasanta, L.I., Structure and thickness dependence of "molecular wiring" in nanostructured enzyme multilayers (2006) Anal. Chem., 78, pp. 399-407
Zafar, M.N., Wang, X., Sygmund, C., Ludwig, R., Leech, D., Gorton, L., Electron-transfer studies with a new flavin adenine dinucleotide dependent glucose dehydrogenase and osmium polymers of different redox potentials (2012) Anal. Chem., 84, pp. 334-341
Ó Conghaile, P., Pöller, S., MacAodha, D., Schuhmann, W., Leech, D., Coupling osmium complexes to epoxy-functionalised polymers to provide mediated enzyme electrodes for glucose oxidation (2013) Biosens. Bioelectron., 43, pp. 30-37
Mao, F., Mano, N., Heller, A., Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme "wiring" hydrogels (2003) J. Am. Chem. Soc., 125, pp. 4951-4957
Jones, M.N., Manley, P., Wilkinson, A., The dissociation of glucose oxidase by sodium n-dodecyl sulphate (1982) Biochem. J., 203, pp. 285-291
ISSN:15675394
DOI:10.1016/j.bioelechem.2015.06.001