Influence of the Hall effect and electron inertia in collisionless magnetic reconnection

We study the role of the Hall current and electron inertia in collisionless magnetic reconnection within the framework of full two-fluid MHD. At spatial scales smaller than the electron inertial length, a topological change of magnetic field lines exclusively due to the electron inertia becomes poss...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Andrés, Nahuel
Otros Autores: Dmitruk, P., Gómez, D.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Institute of Physics Inc. 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07663caa a22010697a 4500
001 PAPER-16242
003 AR-BaUEN
005 20240930105708.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84959378981 
030 |a PHPAE 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Andrés, Nahuel 
245 1 0 |a Influence of the Hall effect and electron inertia in collisionless magnetic reconnection 
260 |b American Institute of Physics Inc.  |c 2016 
270 1 0 |m Andrés, N.; Instituto de Astronomía y Física Del Espacio (CONICET-UBA), Ciudad Autónoma de Buenos AiresArgentina; email: nandres@iafe.uba.ar 
504 |a Andrés, N., Gonzalez, C., Martin, L.N., Dmitruk, P., Gómez, D.O., (2014) Phys. Plasmas, 21 
504 |a Andrés, N., Martin, L.N., Dmitruk, P., Gómez, D.O., (2014) Phys. Plasmas, 21 
504 |a Birn, J., Drake, J.F., Shay, M.A., Rogers, B.N., Denton, R.E., Hesse, M., Kuznetsova, M., Pritchett, P.L., (2001) J. Geophys. Res., 106, p. 3715 
504 |a Birn, J., Hesse, M., (2001) J. Geophys. Res., 106, p. 3737 
504 |a Biskamp, D., (1986) Phys. Fluids, 29, p. 1520 
504 |a Biskamp, D., Schwarz, E., Drake, J.F., (1997) Phys. Plasmas, 4, p. 1002 
504 |a Cai, H.J., Ding, D.Q., Lee, L.C., (1994) J. Geophys. Res., 99, p. 35 
504 |a Chacón, L., Simakov, A.N., Zocco, A., (2007) Phys. Rev. Lett., 99 
504 |a Cowley, S., (1985) Solar System Magnetic Fields, 28, pp. 121-155. , Geophysics and Astrophysics Monographs, edited by E. Priest (Springer, Netherlands) 
504 |a Daughton, W., Roytershteyn, V., Albright, B.J., Karimabadi, H., Yin, L., Bowers, K.J., (2009) Phys. Rev. Lett., 103 
504 |a Dungey, J., (1993) Physics on the Magnetopause, 90, p. 81. , (AGU Monograph, AGU Washington, D.C.) 
504 |a Dungey, J., (2000) Reconnection of Magnetic Fields: Magnetohydrodynamics and Collisionless Theory and Observations, p. 16. , (Cambridge University Press, Cambridge) 
504 |a Fitzpatrick, R., (2004) Phys. Plasmas, 11, p. 937 
504 |a Gómez, D.O., Mahajan, S.M., Dmitruk, P., (2008) Phys. Plasmas, 15 
504 |a Gómez, D.O., Martin, L.N., Dmitruk, P., (2013) Adv. Space Res., 51, p. 1916 
504 |a Hesse, M., Birn, J., Kuznetsova, M., (2001) J. Geophys. Res., 106, p. 3721 
504 |a Hesse, M., Winske, D., (1998) J. Geophys. Res., 103, p. 26479 
504 |a Hesse, M., Winske, D., Kuznetsova, M.M., (1995) J. Geophys. Res., 100, p. 21815 
504 |a Huang, Y., Bhattacharjee, A., Sullivan, B.P., (2011) Phys. Plasmas, 18 
504 |a Kimura, K., Morrison, P.J., (2014) Phys. Plasmas, 21 
504 |a Kuznetsova, M.M., Hesse, M., Winske, D., (2001) J. Geophys. Res., 106, p. 3799 
504 |a Lazarian, A., Vishniac, E.T., (1999) Astrophys. J., 517, p. 700 
504 |a Loureiro, N.F., Schekochihin, A.A., Cowley, S.C., (2007) Phys. Plasmas, 14 
504 |a Ma, Z.W., Bhattacharjee, A., (2001) J. Geophys. Res., 106, p. 3773 
504 |a Malyshkin, L.M., (2008) Phys. Rev. Lett., 101 
504 |a Malyshkin, L.M., (2009) Phys. Rev. Lett., 103 
504 |a Malyshkin, L.M., (2010) Phys. Scr., T142, p. 8 
504 |a Matthaeus, W.H., Lamkin, S.L., (1986) Phys. Fluids, 29, p. 2513 
504 |a Morales, L.F., Dasso, S., Gómez, D.O., (2005) J. Geophys. Res., 110, p. 4204 
504 |a Morales, L.F., Dasso, S., Gómez, D.O., Mininni, P., (2005) J. Atmos. Sol.-Terr. Phys., 67, p. 1821 
504 |a Morales, L.F., Dasso, S., Gómez, D.O., Mininni, P.D., (2006) Adv. Space Res., 37, p. 1287 
504 |a Otto, A., (2001) J. Geophys. Res., 106, p. 3751 
504 |a Parker, E.N., (1957) J. Geophys. Res., 62, p. 509 
504 |a Petschek, H.E., (1964) NASA Spec. Publ., 50, p. 425 
504 |a Pritchett, P.L., (2001) J. Geophys. Res., 106, p. 3783 
504 |a Servidio, S., Matthaeus, W.H., Shay, M.A., Cassak, P.A., Dmitruk, P., (2009) Phys. Rev. Lett., 102 
504 |a Simakov, A.N., Chacón, L., (2008) Phys. Rev. Lett., 101 
504 |a Shay, M.A., Drake, J.F., Denton, R.E., Biskamp, D., (1998) J. Geophys. Res., 103, p. 9165 
504 |a Shay, M.A., Drake, J.F., Rogers, B.N., (1999) Geophys. Res. Lett., 26, p. 2163 
504 |a Shay, M.A., Drake, J.F., Rogers, B.N., Denton, R.E., (2001) J. Geophys. Res., 106, p. 3759 
504 |a Shay, M.A., Drake, J.F., Swisdak, M., (2007) Phys. Rev. Lett., 99 
504 |a Shepherd, L.S., Cassak, P.A., (2010) Phys. Rev. Lett., 105 
504 |a Smith, D., Ghosh, S., Dmitruk, P., Matthaeus, W., (2004) Geophys. Res. Lett., 31, p. L02805 
504 |a Sweet, P.A., (1958) Observatory, 78, p. 30 
504 |a Trubnikov, B.A., (1965) Rev. Plasma Phys., 1, p. 105 
504 |a Tsuneta, S., (1996) Astrophys. J., 456, p. 840 
504 |a Vasyliunas, V.M., (1975) Rev. Geophys., 13, p. 303 
504 |a Wang, A., Bhattacharjee, A., Ma, Z.W., (2000) J. Geophys. Res., 105, p. 27633 
504 |a Wang, A., Bhattacharjee, A., Ma, Z.W., (2001) Phys. Rev. Lett., 87 
504 |a Yamada, M., (2011) Phys. Plasmas, 18 
504 |a Zenitani, S., Hesse, M., Klimas, A., Black, C., Kuznetsova, M., (2011) Phys. Plasmas, 18 
506 |2 openaire  |e Política editorial 
520 3 |a We study the role of the Hall current and electron inertia in collisionless magnetic reconnection within the framework of full two-fluid MHD. At spatial scales smaller than the electron inertial length, a topological change of magnetic field lines exclusively due to the electron inertia becomes possible. Assuming stationary conditions, we derive a theoretical scaling for the reconnection rate, which is simply proportional to the Hall parameter. Using a pseudo-spectral code with no dissipative effects, our numerical results confirm this theoretical scaling. In particular, for a sequence of different Hall parameter values, our numerical results show that the width of the current sheet is independent of the Hall parameter, while its thickness is of the order of the electron inertial range, thus confirming that the stationary reconnection rate is proportional to the Hall parameter. © 2016 AIP Publishing LLC.  |l eng 
593 |a Instituto de Astronomía y Física Del Espacio (CONICET-UBA), Ciudad Autónoma de Buenos Aires, Argentina 
593 |a Departamento de Física (FCEN, UBA) Nahuel Andrés, Argentina 
690 1 0 |a ELECTRONS 
690 1 0 |a MAGNETISM 
690 1 0 |a PLASMA SIMULATION 
690 1 0 |a DISSIPATIVE EFFECTS 
690 1 0 |a ELECTRON INERTIA 
690 1 0 |a MAGNETIC FIELD LINE 
690 1 0 |a MAGNETIC RECONNECTIONS 
690 1 0 |a NUMERICAL RESULTS 
690 1 0 |a RECONNECTION RATE 
690 1 0 |a STATIONARY CONDITIONS 
690 1 0 |a TOPOLOGICAL CHANGES 
690 1 0 |a MAGNETOHYDRODYNAMICS 
700 1 |a Dmitruk, P. 
700 1 |a Gómez, D. 
773 0 |d American Institute of Physics Inc., 2016  |g v. 23  |k n. 2  |p Phys. Plasmas  |x 1070664X  |w (AR-BaUEN)CENRE-6479  |t Physics of Plasmas 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84959378981&doi=10.1063%2f1.4942418&partnerID=40&md5=ccd09ae67eb5d194354b108443e0f34f  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1063/1.4942418  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_1070664X_v23_n2_p_Andres  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1070664X_v23_n2_p_Andres  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_1070664X_v23_n2_p_Andres  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion