Selective hemangioma cell dysfunction and apoptosis triggered by in vitro treatment with imiquimod
Infantile hemangiomas are the most common benign tumors of infancy, characterized by unregulated angiogenesis and endothelial cells with high mitotic rate. Although spontaneous regression occurs, sometimes treatment is required and alternatives to corticosteroids should be considered to reduce side...
Autor principal: | |
---|---|
Otros Autores: | , , , |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
Elsevier Ireland Ltd
2018
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
Sumario: | Infantile hemangiomas are the most common benign tumors of infancy, characterized by unregulated angiogenesis and endothelial cells with high mitotic rate. Although spontaneous regression occurs, sometimes treatment is required and alternatives to corticosteroids should be considered to reduce side effects. Imiquimod is an imidazoquinoline, approved for some skin pathologies other than hemangioma. It is proposed that the effectiveness of imiquimod comes from the activation of immune cells at tumor microenvironment. However, the possibility to selectively kill different cell types and to directly impede angiogenesis has been scarcely explored in vitro for endothelial cells. In this work we showed a dramatic cytotoxicity on hemangioma cell, with a significant lower IC50 value in hemangioma compared to normal endothelial cells and melanoma (employed as a non-endothelial tumor cell line). Nuclear morphometric and flow-cytometry assays revealed imiquimod-induced apoptosis on hemangioma and melanoma cells but a small percentage of senescence on normal endothelial cells. At sub-lethal conditions, cell migration, a key step in angiogenesis turned out to be inhibited in a tumor-selective manner along with actin cytoskeleton disorganization on hemangioma cells. Altogether, these findings pointed out the selective cytotoxic effects of imiquimod on transformed endothelial cells, evidencing the potential for imiquimod to be a therapeutic alternative to reduce extensive superficial hemangioma lesions. © 2018 Elsevier B.V. |
---|---|
Bibliografía: | Chen, T.S., Eichenfield, L.F., Friedlander, S.F., Infantile hemangiomas: an update on pathogenesis and therapy (2013) Pediatrics, 131 (1), pp. 99-108 Mulliken, J.B., Glowacki, J., Hemangiomas and vascular malformations in infants and children: a classification based on endothelial characteristics (1982) Plast. Reconstr. Surg., 69 (3), pp. 412-422 Bruckner, A.L., Frieden, I.J., Hemangiomas of infancy (2003) J. Am. Acad. Dermatol., 48, pp. 477-493 Lo, K., Mihm, M., Fay, A., Current theories on the pathogenesis of infantile hemangioma (2009) Semin. Ophthalmol., 24, pp. 172-177 Haggstrom, A.N., Drolet, B.A., Baselga, E., Prospective study of infantile hemangiomas: clinical characteristics predicting complications and treatment (2006) Pediatrics, 118 (3), pp. 882-887 Leonardi-Bee, J., Batta, K., O'Brien, C., Interventions for infantile haemangiomas (strawberry birthmarks) of the skin (2011) Cochrane Database Syst. Rev., 5, p. D006545 Callahan, A.B., Yoon, M.K., Infantile hemangiomas: a review (2012) Saudi J. Ophthalmol., 26 (3), pp. 283-291 Richter, G.T., Friedman, A.B., Hemangiomas and vascular malformations: current theory and management (2012) Int. J. Pediatr., 2012, pp. 1-10. , 645678 Luu, M., Frieden, I.J., Haemangioma: clinical course, complications and management (2013) Br. J. Dermatol., 169, pp. 20-30 Hoeger, P.H., Harper, J.I., Baselga, E., Treatment of infantile haemangiomas: recommendations of a European expert group (2015) Eur. J. Pediatr., 174 (7), pp. 855-865 Holland, K.E., Frieden, I.J., Frommelt, P.C., Hypoglycemia in children taking propranolol for the treatment of infantile hemangioma (2010) Arch. Dermatol., 146 (7), pp. 775-778 De Graaf, M., Breur, J.M., Raphael, M.F., Adverse effects of propranolol when used in the treatment of hemangiomas: a case series of 28 infants (2011) J. Am. Acad. Dermatol., 65 (2), pp. 320-327 Qayyum, S., Role of Propranolol in the management of periocular infantile hemangioma (2016) Pak. J. Ophthalmol., 32 (2), pp. 84-90 Xiao, Q., Li, Q., Zhang, B., Yu, W., Propranolol therapy of infantile hemangiomas: efficacy, adverse effects, and recurrence (2013) Pediatr. Surg. Int., 29 (June (6)), pp. 575-581 Martinez, M.I., Sanchez-Carpintero, I., North, P.E., Clinical resolution with 5% imiquimod cream (2002) Arch Dermatol. Infantile Hemangioma, 138, pp. 881-884 Welsh, O., Olazaran, Z., Gomez, M., Treatment of infantile hemangiomas with short-term application of imiquimod 5% cream (2004) J. Am. Acad. Dermatol., 51 (4), pp. 639-642 Hazen, P.G., Carney, J.F., Engstrom, C.W., Proliferating hemangioma of infancy: successful treatment with topical 5% imiquimod cream (2005) Pediatr. Dermatol., 22, pp. 254-256 Barry, R.B., Hughes, B.R., Cook, L.J., Involution of infantile haemangiomas after imiquimod 5% cream (2008) Clin. Exp. Dermatol., 33 (4), pp. 446-449 Miller, R.L., Gerster, J.F., Owens, M.L., Imiquimod applied topically: a novel immune response modifier and new class of drug (1999) Int. J. Immunopharmacol., 21, pp. 1-14 Tyring, S., Imiquimod applied topically: a novel immune response modifier (2001) Skin Therapy Lett., 6, pp. 1-4 Kirtschig, G., van Meurs, T., van Doorn, R., Twelve-week treatment of lentigo maligna with imiquimod results in a high and sustained clearance rate (2015) Acta Derm. Venereol., 95, pp. 83-85 Mora, A.N., Karia, P.S., Nguyen, B.M., A quantitative systematic review of the efficacy of imiquimod monotherapy for lentigo maligna and an analysis of factors that affect tumor clearance (2015) J. Am. Acad. Dermatol., 73 (2), pp. 205-212 Steinmann, A., Funk, J.O., Schuler, G., von den Driesch, P., Topical imiquimod treatment of a cutaneous melanoma metastasis (2000) J. Am. Acad. Dermatol., 43, pp. 555-556 Beutner, K.R., Spruance, S.L., Hougham, A.J., Treatment of genital warts with an immune-response modifier (imiquimod) (1998) J. Am. Acad. Dermatol., 38, pp. 230-239 Stockfleth, E., Lmax and imiquimod 3. 75%: the new standard in AK management (2015) J. Eur. Acad. Dermatol. Venereol., 29, pp. 9-14 Gupta, G., Stockfleth, E., Peris, K., Long-term sustained lesion clearance from Lmax with imiquimod 3.75%, a new field-directed treatment for actinic keratosis (2015) J. Eur. Acad. Dermatol. Venereol., 9, pp. 1840-1842 Hannuksela-Svahn, A., Nordal, E., Christensen, O.B., Treatment of multiple basal cell carcinomas in the scalp with imiquimod 5% cream (2000) Acta Derm. Venereol., 80 (5), pp. 381-382 Marks, R., Gebauer, K., Shumack, S., Imiquimod 5% cream in the treatment of superficial basal cell carcinoma: results of a multicenter 6-week dose-response trial (2001) J. Am. Acad. Dermatol., 44 (5), pp. 807-813 Sapijaszko, M.J., Imiquimod 5% cream (Aldara) in the treatment of basal cell carcinoma (2005) Skin Ther. Lett., 10, pp. 2-5 McCuaig, C.C., Dubois, J., Powell, J., A phase II, open-label study of the efficacy and safety of imiquimod in the treatment of superficial and mixed infantile hemangioma (2009) Pediatr. Dermatol., 26, pp. 203-212 Jiang, C., Hu, X., Ma, G., A prospective self-controlled phase II study of imiquimod 5% cream in the treatment of infantile hemangioma (2011) Pediatr. Dermatol., 28, pp. 259-266 Vidal, D., Alomar, A., Mode of action and clinical use of imiquimod (2008) Expert Rev. Dermatol., 3 (2), pp. 151-159 Kobold, S., Wiedemann, G., Rothenfußer, S., Modes of action of TLR7 agonists in cancer therapy (2014) Immunotherapy, 6 (10), pp. 1085-1095 Rogge, L., Barberis-Maino, L., Biffi, M., Selective expression of an interleukin-12 receptor component by human T helper 1 cells (1997) J. Exp. Med., 185, pp. 825-831 Weber, A., Zimmermann, C., Mausberg, A.K., Induction of pro-inflammatory cytokine production in thymocytes by the immune response modifiers Imiquimod and Gardiquimod (2013) Int. Immunopharmacol., 17, pp. 427-431 Garlanda, C., Parravicini, C., Sironi, M., Progressive growth in immunodeficient mice and host cell recruitment by mouse endothelial cells transformed by polyoma middle-sized T antigen: implications for the pathogenesis of opportunistic vascular tumors (1994) Proc. Natl. Acad. Sci. U. S. A., 91 (15), pp. 7291-7295 Dong, Q.G., Bernasconi, S., Lostaglio, S., A general strategy for isolation of endothelial cells from murine tissues. Characterization of two endothelial cell lines from the murine lung and subcutaneous sponge implants (1997) Arterioscler. Thromb. Vasc. Biol., 17 (8), pp. 1599-1604 Motulsky, H., Christopoulos, A., Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting (2004), Oxford University Press, Inc New York; Filippi-Chiela, E.C., Oliveira, M.M., Jurkovski, B., Nuclear morphometric analysis (NMA): screening of senescence, apoptosis and nuclear irregularities (2012) PLoS One, 7 (8), p. e42522 Kerr, J.F., Wyllie, A.H., Currie, A.R., Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics (1972) Br. J. Cancer, pp. 239-257 Kroemer, G., Galluzzi, L., Vandenabeele, P., Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009 (2009) Cell Death Differ., 16 (1), pp. 3-11 Schön, M., Bong, A.B., Drewniok, C., Tumor-selective induction of apoptosis and the small-molecule immune response modifier imiquimod (2003) J. Natl. Cancer Inst., 95 (15), pp. 1138-1149 Schön, M.P., Wienrich, B.G., Drewniok, C., Death receptor-independent apoptosis in malignant melanoma induced by the small-molecule immune response modifier imiquimod (2004) J. Invest. Dermatol., 122 (5), pp. 1266-1276 |
ISSN: | 03784274 |
DOI: | 10.1016/j.toxlet.2018.01.016 |