Selective hemangioma cell dysfunction and apoptosis triggered by in vitro treatment with imiquimod

Infantile hemangiomas are the most common benign tumors of infancy, characterized by unregulated angiogenesis and endothelial cells with high mitotic rate. Although spontaneous regression occurs, sometimes treatment is required and alternatives to corticosteroids should be considered to reduce side...

Descripción completa

Detalles Bibliográficos
Autor principal: Rocco, R.
Otros Autores: Alegre, N., Pozner, R., Wainstok, Rosa, Gazzaniga, S.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ireland Ltd 2018
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:Infantile hemangiomas are the most common benign tumors of infancy, characterized by unregulated angiogenesis and endothelial cells with high mitotic rate. Although spontaneous regression occurs, sometimes treatment is required and alternatives to corticosteroids should be considered to reduce side effects. Imiquimod is an imidazoquinoline, approved for some skin pathologies other than hemangioma. It is proposed that the effectiveness of imiquimod comes from the activation of immune cells at tumor microenvironment. However, the possibility to selectively kill different cell types and to directly impede angiogenesis has been scarcely explored in vitro for endothelial cells. In this work we showed a dramatic cytotoxicity on hemangioma cell, with a significant lower IC50 value in hemangioma compared to normal endothelial cells and melanoma (employed as a non-endothelial tumor cell line). Nuclear morphometric and flow-cytometry assays revealed imiquimod-induced apoptosis on hemangioma and melanoma cells but a small percentage of senescence on normal endothelial cells. At sub-lethal conditions, cell migration, a key step in angiogenesis turned out to be inhibited in a tumor-selective manner along with actin cytoskeleton disorganization on hemangioma cells. Altogether, these findings pointed out the selective cytotoxic effects of imiquimod on transformed endothelial cells, evidencing the potential for imiquimod to be a therapeutic alternative to reduce extensive superficial hemangioma lesions. © 2018 Elsevier B.V.
Bibliografía:Chen, T.S., Eichenfield, L.F., Friedlander, S.F., Infantile hemangiomas: an update on pathogenesis and therapy (2013) Pediatrics, 131 (1), pp. 99-108
Mulliken, J.B., Glowacki, J., Hemangiomas and vascular malformations in infants and children: a classification based on endothelial characteristics (1982) Plast. Reconstr. Surg., 69 (3), pp. 412-422
Bruckner, A.L., Frieden, I.J., Hemangiomas of infancy (2003) J. Am. Acad. Dermatol., 48, pp. 477-493
Lo, K., Mihm, M., Fay, A., Current theories on the pathogenesis of infantile hemangioma (2009) Semin. Ophthalmol., 24, pp. 172-177
Haggstrom, A.N., Drolet, B.A., Baselga, E., Prospective study of infantile hemangiomas: clinical characteristics predicting complications and treatment (2006) Pediatrics, 118 (3), pp. 882-887
Leonardi-Bee, J., Batta, K., O'Brien, C., Interventions for infantile haemangiomas (strawberry birthmarks) of the skin (2011) Cochrane Database Syst. Rev., 5, p. D006545
Callahan, A.B., Yoon, M.K., Infantile hemangiomas: a review (2012) Saudi J. Ophthalmol., 26 (3), pp. 283-291
Richter, G.T., Friedman, A.B., Hemangiomas and vascular malformations: current theory and management (2012) Int. J. Pediatr., 2012, pp. 1-10. , 645678
Luu, M., Frieden, I.J., Haemangioma: clinical course, complications and management (2013) Br. J. Dermatol., 169, pp. 20-30
Hoeger, P.H., Harper, J.I., Baselga, E., Treatment of infantile haemangiomas: recommendations of a European expert group (2015) Eur. J. Pediatr., 174 (7), pp. 855-865
Holland, K.E., Frieden, I.J., Frommelt, P.C., Hypoglycemia in children taking propranolol for the treatment of infantile hemangioma (2010) Arch. Dermatol., 146 (7), pp. 775-778
De Graaf, M., Breur, J.M., Raphael, M.F., Adverse effects of propranolol when used in the treatment of hemangiomas: a case series of 28 infants (2011) J. Am. Acad. Dermatol., 65 (2), pp. 320-327
Qayyum, S., Role of Propranolol in the management of periocular infantile hemangioma (2016) Pak. J. Ophthalmol., 32 (2), pp. 84-90
Xiao, Q., Li, Q., Zhang, B., Yu, W., Propranolol therapy of infantile hemangiomas: efficacy, adverse effects, and recurrence (2013) Pediatr. Surg. Int., 29 (June (6)), pp. 575-581
Martinez, M.I., Sanchez-Carpintero, I., North, P.E., Clinical resolution with 5% imiquimod cream (2002) Arch Dermatol. Infantile Hemangioma, 138, pp. 881-884
Welsh, O., Olazaran, Z., Gomez, M., Treatment of infantile hemangiomas with short-term application of imiquimod 5% cream (2004) J. Am. Acad. Dermatol., 51 (4), pp. 639-642
Hazen, P.G., Carney, J.F., Engstrom, C.W., Proliferating hemangioma of infancy: successful treatment with topical 5% imiquimod cream (2005) Pediatr. Dermatol., 22, pp. 254-256
Barry, R.B., Hughes, B.R., Cook, L.J., Involution of infantile haemangiomas after imiquimod 5% cream (2008) Clin. Exp. Dermatol., 33 (4), pp. 446-449
Miller, R.L., Gerster, J.F., Owens, M.L., Imiquimod applied topically: a novel immune response modifier and new class of drug (1999) Int. J. Immunopharmacol., 21, pp. 1-14
Tyring, S., Imiquimod applied topically: a novel immune response modifier (2001) Skin Therapy Lett., 6, pp. 1-4
Kirtschig, G., van Meurs, T., van Doorn, R., Twelve-week treatment of lentigo maligna with imiquimod results in a high and sustained clearance rate (2015) Acta Derm. Venereol., 95, pp. 83-85
Mora, A.N., Karia, P.S., Nguyen, B.M., A quantitative systematic review of the efficacy of imiquimod monotherapy for lentigo maligna and an analysis of factors that affect tumor clearance (2015) J. Am. Acad. Dermatol., 73 (2), pp. 205-212
Steinmann, A., Funk, J.O., Schuler, G., von den Driesch, P., Topical imiquimod treatment of a cutaneous melanoma metastasis (2000) J. Am. Acad. Dermatol., 43, pp. 555-556
Beutner, K.R., Spruance, S.L., Hougham, A.J., Treatment of genital warts with an immune-response modifier (imiquimod) (1998) J. Am. Acad. Dermatol., 38, pp. 230-239
Stockfleth, E., Lmax and imiquimod 3. 75%: the new standard in AK management (2015) J. Eur. Acad. Dermatol. Venereol., 29, pp. 9-14
Gupta, G., Stockfleth, E., Peris, K., Long-term sustained lesion clearance from Lmax with imiquimod 3.75%, a new field-directed treatment for actinic keratosis (2015) J. Eur. Acad. Dermatol. Venereol., 9, pp. 1840-1842
Hannuksela-Svahn, A., Nordal, E., Christensen, O.B., Treatment of multiple basal cell carcinomas in the scalp with imiquimod 5% cream (2000) Acta Derm. Venereol., 80 (5), pp. 381-382
Marks, R., Gebauer, K., Shumack, S., Imiquimod 5% cream in the treatment of superficial basal cell carcinoma: results of a multicenter 6-week dose-response trial (2001) J. Am. Acad. Dermatol., 44 (5), pp. 807-813
Sapijaszko, M.J., Imiquimod 5% cream (Aldara) in the treatment of basal cell carcinoma (2005) Skin Ther. Lett., 10, pp. 2-5
McCuaig, C.C., Dubois, J., Powell, J., A phase II, open-label study of the efficacy and safety of imiquimod in the treatment of superficial and mixed infantile hemangioma (2009) Pediatr. Dermatol., 26, pp. 203-212
Jiang, C., Hu, X., Ma, G., A prospective self-controlled phase II study of imiquimod 5% cream in the treatment of infantile hemangioma (2011) Pediatr. Dermatol., 28, pp. 259-266
Vidal, D., Alomar, A., Mode of action and clinical use of imiquimod (2008) Expert Rev. Dermatol., 3 (2), pp. 151-159
Kobold, S., Wiedemann, G., Rothenfußer, S., Modes of action of TLR7 agonists in cancer therapy (2014) Immunotherapy, 6 (10), pp. 1085-1095
Rogge, L., Barberis-Maino, L., Biffi, M., Selective expression of an interleukin-12 receptor component by human T helper 1 cells (1997) J. Exp. Med., 185, pp. 825-831
Weber, A., Zimmermann, C., Mausberg, A.K., Induction of pro-inflammatory cytokine production in thymocytes by the immune response modifiers Imiquimod and Gardiquimod (2013) Int. Immunopharmacol., 17, pp. 427-431
Garlanda, C., Parravicini, C., Sironi, M., Progressive growth in immunodeficient mice and host cell recruitment by mouse endothelial cells transformed by polyoma middle-sized T antigen: implications for the pathogenesis of opportunistic vascular tumors (1994) Proc. Natl. Acad. Sci. U. S. A., 91 (15), pp. 7291-7295
Dong, Q.G., Bernasconi, S., Lostaglio, S., A general strategy for isolation of endothelial cells from murine tissues. Characterization of two endothelial cell lines from the murine lung and subcutaneous sponge implants (1997) Arterioscler. Thromb. Vasc. Biol., 17 (8), pp. 1599-1604
Motulsky, H., Christopoulos, A., Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting (2004), Oxford University Press, Inc New York; Filippi-Chiela, E.C., Oliveira, M.M., Jurkovski, B., Nuclear morphometric analysis (NMA): screening of senescence, apoptosis and nuclear irregularities (2012) PLoS One, 7 (8), p. e42522
Kerr, J.F., Wyllie, A.H., Currie, A.R., Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics (1972) Br. J. Cancer, pp. 239-257
Kroemer, G., Galluzzi, L., Vandenabeele, P., Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009 (2009) Cell Death Differ., 16 (1), pp. 3-11
Schön, M., Bong, A.B., Drewniok, C., Tumor-selective induction of apoptosis and the small-molecule immune response modifier imiquimod (2003) J. Natl. Cancer Inst., 95 (15), pp. 1138-1149
Schön, M.P., Wienrich, B.G., Drewniok, C., Death receptor-independent apoptosis in malignant melanoma induced by the small-molecule immune response modifier imiquimod (2004) J. Invest. Dermatol., 122 (5), pp. 1266-1276
ISSN:03784274
DOI:10.1016/j.toxlet.2018.01.016