Prominence-corona transition region plasma diagnostics from SOHO observations
New results concerning prominence observations and in particular the prominence-corona transition region (PCTR) are presented. In order to cover a temperature range from 2 × 104 to 7 × 105 K, several emission lines in many different ionization states were observed with SUMER and CDS on board SOHO. E...
Autor principal: | |
---|---|
Otros Autores: | , |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
2004
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
Sumario: | New results concerning prominence observations and in particular the prominence-corona transition region (PCTR) are presented. In order to cover a temperature range from 2 × 104 to 7 × 105 K, several emission lines in many different ionization states were observed with SUMER and CDS on board SOHO. EM and DEM were measured through the whole PCTR. We compared the prominence DEM with the DEM from other solar structures (active region, coronal hole and the chromosphere-corona transition region (CCTR)). We notice a displacement of the prominence DEM minimum towards lower temperatures with respect to the minimum of the other structures. Electron density and pressure diagnostics have been made from the observed C III lines. Local electron density and pressure for T ∼ 7 × 104 K are respectively log Ne = 9.30-0.34+0.30 and 0.0405-0.014+0.012. Extrapolations over the entire PCTR temperature range are in good agreement with previous SOHO results (Madjarska et al., 1999). We also provide values of electron density and pressure in two different regions of the prominence (center and edge). The Doppler velocity in the PCTR shows a trend to increase with temperature (at least up to 30 km s -1 at T ∼ 7 × 104 K), an indication of important mass flows. A simple morphological model is proposed from density and motion diagnostics. If the prominence is taken as a magnetic flux tube, one can derive an opening of the field lines with increasing temperature. If the prominence is represented as a collection of threads, their number increases with temperature from 20 to 800. Derived filling factors can reach values as low as 10 -3 for a layer thickness of the order of 5000 km. The variation of non-thermal velocities is determined for the first time, in the temperature range from 2 × 104 to 7 × 105 K. The quite clear similarity with the CCTR non-thermal velocities would indicate that heating mechanisms in the PCTR could be the same as in the CCTR (wave propagation, turbulence MHD). © 2004 Kluwer Academic Publishers. |
---|---|
Bibliografía: | Arnaud, M., Rothenflug, R., (1985) Astron. Astrophys. Suppl. Ser., 60, p. 425 Bommier, V., Landi Degl'Innocenti, E., Leroy, J.-L., Sahal-Brechot, S., (1994) Solar Phys., 154, p. 231 Chae, J., Schühle, U., Lemaire, P., (1998) Astrophys. J., 505, p. 957 Chiuderi, C., Chiuderi-Drago, F., (1991) Solar Phys., 132, p. 81 Chiuderi-Drago, F., Engvold, O., Jensen, E., (1992) Solar Phys., 139, p. 47 Curdt, W., Brekke, P., Feldman, U., Wilhelm, K., Dwivedi, B.N., (2001) Astron. Astrophys., 375, p. 591 David, C., Gabriel, A.H., Bely-Dubau, F., (1997) ESA SP-404: Fifth SOHO Workshop: The Corona and Solar Wind Near Minimum Activity, p. 313. , http://www.medoc-ias.u-psud.fr/science/david De Boer, C.R., Stellmacher, G., Wiehr, E., (1998) Astron. Astrophys., 334, p. 280 Del Zanna, G., Mason, H.E., (2003) Astron. Astrophys., 406, p. 1089 Del Zanna, G., Bromage, B.J.I., Landi, E., Landini, M., (2001) Astron. Astrophys., 379, p. 708 Dere, K.P., Landi, E., Mason, H.E., Monsignori Fossi, B.C., Young, P.R., (1997) Astron. Astrophys., 125, p. 149 Dupree, A.K., Foukal, P.V., Jordan, C., (1976) Astrophys. J., 209, p. 621 Engvold, O., (1988) Solar and Stellar Coronal Structure and Dynamics, p. 151 Engvold, O., (1989) ASSL Vol. 150: Dynamics and Structure of Quiescent Solar Prominences, 150, p. 47 Feldman, U., Mandelbaum, P., Seely, J.F., Doschek, G.A., Gursky, H., (1992) Astrophys. J. Suppl., 81, p. 387 Fontenla, J.M., Rovira, M., Vial, J.-C., Gouttebroze, P., (1996) Astrophys. J., 466, p. 496 Harrison, R.A., Sawyer, E.C., Carter, M.K., Cruise, A.M., (1995) Solar Phys., 162, p. 233 Lemaire, P., Wilhelm, K., Curdt, W., Schühle, U., (1997) Solar Phys., 170, p. 105 Leroy, J.L., (1988) Solar and Stellar Coronal Structure and Dynamics, Proceedings of the Ninth Sacramento Peak Summer Symposium, Sunspot, NM, National Solar Observatory, p. 422 Madjarska, M.S., Vial, J.-C., Bocchialini, K., Dermendjiev, V.N., (1999) ESA SP-446: 8th SOHO Workshop: Plasma Dynamics and Diagnostics in the Solar Transition Region and Corona, p. 467 Mein, P., Mein, N., (1991) Solar Phys., 136, p. 317 Munro, R.H., Dupree, A.K., Withbroe, G.L., (1971) Solar Phys., 19, p. 347 Orrall, F.Q., Schmahl, E.J., (1976) Solar Phys., 50, p. 364 Patsourakos, S., Vial, J., (2002) Solar Phys., 208, p. 253 Pauluhn, A., Lang, J., Schühle, U., Solanki, S.K., (2002) ESA SP-508: from Solar Min to Max: Half a Solar Cycle with SOHO, p. 223 Pneuman, G.W., Kopp, R.A., (1978) Solar Phys., 57, p. 49 Ruždjak, V., Tandberg-Hanssen, E., (1990) Dynamics of Quiescent Prominences; Proceedings of the 117th Colloquium of IAU Schmahl, E.J., Orrall, F.Q., (1986) Coronal and Prominence Plasmas, p. 127 Stellmacher, G., Wiehr, E., Dammasch, I.E., (2003) Solar Phys., 217, p. 133 Tandberg-Hanssen, E., (1995) The Nature of Solar Prominences, , Astrophysics and Space Science Library, Dordrecht: Kluwer Academic Publishers Wilhelm, K., Curdt, W., Marsch, E., Schühle, U., Lemaire, P., (1995) Solar Phys., 162, p. 189 Zirker, J.B., Koutchmy, S., (1991) Solar Phys., 131, p. 107 |
ISSN: | 00380938 |
DOI: | 10.1007/s11207-004-5101-0 |