Replacement Orthogonal Wavelengths Selection as a new method for multivariate calibration in spectroscopy

Wavelength selection is a critical step in multivariate calibration. Variable selection methods are used to find the most relevant variables, leading to improved prediction accuracy, while simplifying both the built models and their interpretation. In addition, different spectrophotometer designs an...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Goodarzi, M.
Otros Autores: Bacelo, D.E, Fioressi, S.E, Duchowicz, P.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Inc. 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14480caa a22010217a 4500
001 PAPER-25657
003 AR-BaUEN
005 20230518205745.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85057588353 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a MICJA 
100 1 |a Goodarzi, M. 
245 1 0 |a Replacement Orthogonal Wavelengths Selection as a new method for multivariate calibration in spectroscopy 
260 |b Elsevier Inc.  |c 2019 
270 1 0 |m Fioressi, S.E.; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano, Villanueva 1324, Argentina; email: sfioressi@yahoo.com 
506 |2 openaire  |e Política editorial 
504 |a McKelvy, M.L., Britt, T.R., Davis, B.L., Gillie, J.K., Graves, F.B., Lentz, L.A., Infrared spectroscopy (1998) Anal. Chem., 70, pp. 119-178 
504 |a Pasquini, C., Near infrared spectroscopy: a mature analytical technique with new perspectives–a review (2018) Anal. Chim. Acta, 1026, pp. 8-36 
504 |a Pieters, S., Saeys, W., Van den Kerkhof, T., Goodarzi, M., Hellings, M., De Beer, T., Robust calibrations on reduced sample sets for API content prediction in tablets: definition of a cost-effective NIR model development strategy (2013) Anal. Chim. Acta, 761, pp. 62-70 
504 |a Rinnan, Å., van den Berg, F., Engelsen, S.B., Review of the most common pre-processing techniques for near-infrared spectra (2009) TrAC Trends Anal. Chem., 28, pp. 1201-1222 
504 |a Agelet, L.E., Hurburgh, C.R., Jr., A tutorial on near infrared spectroscopy and its calibration (2010) Crit. Rev. Anal. Chem., 40, pp. 246-260 
504 |a Yun, Y.-H., Wang, W.-T., Tan, M.-L., Liang, Y.-Z., Li, H.-D., Cao, D.-S., A strategy that iteratively retains informative variables for selecting optimal variable subset in multivariate calibration (2014) Anal. Chim. Acta, 807, pp. 36-43 
504 |a Goodarzi, M., Vander Heyden, Y., Funar-Timofei, S., Towards better understanding of feature-selection or reduction techniques for quantitative structure–activity relationship models (2013) TrAC Trends Anal. Chem., 42, pp. 49-63 
504 |a Goodarzi, M., Dejaegher, B., Heyden, Y.V., Feature selection methods in QSAR studies (2012) J. AOAC Int., 95, pp. 636-651 
504 |a Chen, M., Khare, S., Huang, B., Zhang, H., Lau, E., Feng, E., Recursive wavelength-selection strategy to update near-infrared spectroscopy model with an industrial application (2013) Ind. Eng. Chem. Res., 52, pp. 7886-7895 
504 |a Xiaobo, Z., Jiewen, Z., Povey, M.J., Holmes, M., Hanpin, M., Variables selection methods in near-infrared spectroscopy (2010) Anal. Chim. Acta, 667, pp. 14-32 
504 |a Araújo, M.C.U., Saldanha, T.C.B., Galvao, R.K.H., Yoneyama, T., Chame, H.C., Visani, V., The successive projections algorithm for variable selection in spectroscopic multicomponent analysis (2001) Chemom. Intell. Lab. Syst., 57, pp. 65-73 
504 |a Centner, V., Massart, D.-L., de Noord, O.E., de Jong, S., Vandeginste, B.M., Sterna, C., Elimination of uninformative variables for multivariate calibration (1996) Anal. Chem., 68, pp. 3851-3858 
504 |a Chong, I.-G., Jun, C.-H., Performance of some variable selection methods when multicollinearity is present (2005) Chemom. Intell. Lab. Syst., 78, pp. 103-112 
504 |a Hörchner, U., Kalivas, J.H., Further investigation on a comparative study of simulated annealing and genetic algorithm for wavelength selection (1995) Anal. Chim. Acta, 311, pp. 1-13 
504 |a Teofilo, R.F., Martins, J.P.A., Ferreira, M.M., Sorting variables by using informative vectors as a strategy for feature selection in multivariate regression (2009) J. Chemom., 23, pp. 32-48 
504 |a Leardi, R., Gonzalez, A.L., Genetic algorithms applied to feature selection in PLS regression: how and when to use them (1998) Chemom. Intell. Lab. Syst., 41, pp. 195-207 
504 |a Kasemsumran, S., Du, Y.P., Maruo, K., Ozaki, Y., Improvement of partial least squares models for in vitro and in vivo glucose quantifications by using near-infrared spectroscopy and searching combination moving window partial least squares (2006) Chemom. Intell. Lab. Syst., 82, pp. 97-103 
504 |a Andries, J.P., Vander Heyden, Y., Buydens, L.M., Improved variable reduction in partial least squares modelling based on predictive-property-ranked variables and adaptation of partial least squares complexity (2011) Anal. Chim. Acta, 705, pp. 292-305 
504 |a Garrido Frenich, A., Jouan-Rimbaud, D., Massart, D., Kuttatharmmakul, S., Martinez Galera, M., Martinez Vidal, J., Wavelength selection method for multicomponent spectrophotometric determinations using partial least squares (1995) Analyst, 120, pp. 2787-2792 
504 |a Brown, P.J., Wavelength selection in multicomponent near-infrared calibration (1992) J. Chemom., 6, pp. 151-161 
504 |a Yun, Y.-H., Li, H.-D., Wood, L.R., Fan, W., Wang, J.-J., Cao, D.-S., An efficient method of wavelength interval selection based on random frog for multivariate spectral calibration (2013) Spectrochim. Acta A, 111, pp. 31-36 
504 |a Nielsen, J.P., Pedersen, D.K., Munck, L., Development of nondestructive screening methods for single kernel characterization of wheat (2003) Cereal Chem., 80, pp. 274-280 
504 |a Duchowicz, P.R., Castro, E.A., Fernández, F.M., Alternative algorithm for the search of an optimal set of descriptors in QSAR-QSPR studies (2006) MATCH Commun. Math. Comput. Chem., 55, pp. 179-192 
504 |a Duchowicz, P.R., Talevi, A., Bruno-Blanch, L.E., Castro, E.A., New QSPR study for the prediction of aqueous solubility of drug-like compounds (2008) Bioorg. Med. Chem., 16, pp. 7944-7955 
504 |a Goodarzi, M., Duchowicz, P.R., Wu, C.H., Fernández, F.M., Castro, E.A., New hybrid genetic based support vector regression as QSAR approach for analyzing flavonoids-GABA(A) complexes (2009) J. Chem. Inf. Model., 49, pp. 1475-1485 
504 |a Duchowicz, P.R., Giraudo, M.A., Castro, E.A., Pomilio, A.B., Amino acid profiles and quantitative structure-property relationship models as markers for Merlot and Torrontés wines (2013) Food Chem., 140, pp. 210-216 
504 |a Duchowicz, P.R., Bennardi, D.O., Bacelo, D.E., Bonifazi, E.L., Rios-Luci, C., Padrón, J.M., QSAR on antiproliferative naphthoquinones based on a conformation-independent approach (2014) Eur. J. Med. Chem., 77, pp. 176-184 
504 |a Randic, M., Resolution of ambiguities in structure-property studies by use of orthogonal descriptors (1991) J. Chem. Inf. Comput. Sci., 31, pp. 311-320 
504 |a Randic, M., Orthogonal molecular descriptors (1991) Nouv. J. Chim., 15, pp. 517-525 
504 |a Andries, J.P., Vander Heyden, Y., Buydens, L.M., Predictive-property-ranked variable reduction in partial least squares modelling with final complexity adapted models: comparison of properties for ranking (2013) Anal. Chim. Acta, 760, pp. 34-45 
504 |a Schüürmann, G., Ebert, R.U., Chen, J., Wang, B., Kuhne, R., External validation and prediction employing the predictive squared correlation coefficient test set activity mean vs. training set activity mean (2008) J. Chem. Inf. Model., 48, pp. 2140-2145 
504 |a Roy, K., Mitra, I., On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design (2011) Comb. Chem. High Throughput Screen., 14, p. 450 
504 |a Chirico, N., Gramatica, P., Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient (2011) J. Chem. Inf. Model., 51, pp. 2320-2335 
504 |a Konovalov, D.A., Llewellyn, L.E., Heyden, Y.V., Coomans, D., Robust cross-validation of linear regression QSAR models (2008) J. Chem. Inf. Model., 48, p. 2081 
504 |a Golbraikh, A., Tropsha, A., Beware of q2! (2002) J. Mol. Graph. Model., 20, pp. 269-276 
504 |a Rücker, C., Rücker, G., Meringer, M., Y-randomization and its variants in QSPR/QSAR (2007) J. Chem. Inf. Model., 47, pp. 2345-2357 
504 |a Massart, D.L., Vandeginste, B.G.M., Buydens, L.M.C., de Jong, S., Lewi, P.J., Smeyers-Verbeke, J., Handbook of Chemometrics and Qualimetrics, Part A (1997), Elsevier; Cederkvist, H.R., Aastveit, A.H., Næs, T., A comparison of methods for testing differences in predictive ability (2005) J. Chemom., 19, pp. 500-509 
504 |a Corder, G., Foreman, D., Nonparametric statistics: an introduction (2009) Nonparametric Statistics for Non-statisticians: A Step-by-Step Approach, pp. 101-111. , John Wiley & Sons Hoboken, NJ, USA 
504 |a Goicoechea, H.C., Olivieri, A.C., A new family of genetic algorithms for wavelength interval selection in multivariate analytical spectroscopy (2003) J. Chemom., 17, pp. 338-345 
504 |a Jiang, J.-H., Berry, R.J., Siesler, H.W., Ozaki, Y., Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data (2002) Anal. Chem., 74, pp. 3555-3565 
504 |a Abdi, H., Partial least squares regression and projection on latent structure regression (PLS regression) (2010) Wiley Interdiscip. Rev. Comput. Stat., 2, pp. 97-106 
504 |a Goodarzi, M., Freitas, M.P., Vander Heyden, Y., Linear and nonlinear quantitative structure-activity relationship modeling of the HIV-1 reverse transcriptase inhibiting activities of thiocarbamates (2011) Anal. Chim. Acta, 705, pp. 166-173 
504 |a Tsenkova, R., Atanassova, S., Toyoda, K., Ozaki, Y., Itoh, K., Fearn, T., Near-infrared spectroscopy for dairy management: measurement of unhomogenized milk composition (1999) J. Dairy Sci., 82, pp. 2344-2351 
504 |a Chen, T., Martin, E., Bayesian linear regression and variable selection for spectroscopic calibration (2009) Anal. Chim. Acta, 631, pp. 13-21 
504 |a Pedersen, D.K., Martens, H., Nielsen, J.P., Engelsen, S.B., Near-infrared absorption and scattering separated by extended inverted signal correction (EISC): analysis of near-infrared transmittance spectra of single wheat seeds (2002) Soc. Appl. Spectr., 56, pp. 1206-1214 
504 |a Khodabux, K., L'Omelette, M.S.S., Jhaumeer-Laulloo, S., Ramasami, P., Rondeau, P., Chemical and near-infrared determination of moisture, fat and protein in tuna fishes (2007) Food Chem., 102, pp. 669-675 
504 |a Apan, A., Kelly, R., Phinn, S., Strong, W., Lester, D., Butler, D., Predicting grain protein content in wheat using hyperspectral sensing of in-season crop canopies and partial least squares regression (2006) Int. J. Geoinf., 2, pp. 93-108 
520 3 |a Wavelength selection is a critical step in multivariate calibration. Variable selection methods are used to find the most relevant variables, leading to improved prediction accuracy, while simplifying both the built models and their interpretation. In addition, different spectrophotometer designs and measurement principles result in non-destructive technologies applied in many fields, such as agriculture, food chemistry and pharmaceutics. However, an on-chip or portable device does not allow acquiring data from a large number of wavelengths. Therefore, the most informative combination of a limited number of variables should be selected. The Replacement Orthogonal Wavelengths Selection (ROWS) method is described here as a new method. This algorithm aims at selecting as few wavelengths as possible, while keeping or improving the prediction performance of the model, compared to when no variable selection is applied. The ROWS is applied to several near infrared spectroscopic data sets leading to improved analytical figures of merits upon wavelength selection in comparison to a built PLS model using entire spectral range. The performance of the ROWS-MLR method was compared to the FCAM-PLS method. The resulting models are not significantly different from those of FCAM-PLS; however, it involves a significantly smaller amount of variables. © 2018  |l eng 
536 |a Detalles de la financiación: Ministerio de Ciencia, Tecnología e Innovación Productiva 
536 |a Detalles de la financiación: National Council for Scientific Research 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP11220130100311 
536 |a Detalles de la financiación: PRD acknowledges the financial support from the National Research Council of Argentina ( CONICET ) PIP11220130100311 project and to Ministerio de Ciencia, Tecnología e Innovación Productiva for the electronic library facilities. DEB, SEF, and PRD are members of the scientific researcher career of CONICET. 
593 |a Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano, Villanueva 1324, Buenos Aires, C1426BMJ, Argentina 
593 |a Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, UNLP, Diag. 113 y 64, C.C. 16, Sucursal 4, La Plata, 1900, Argentina 
690 1 0 |a FCAM-PLS 
690 1 0 |a NEAR-INFRARED SPECTROSCOPY 
690 1 0 |a ORTHOGONALIZATION 
690 1 0 |a REPLACEMENT METHOD 
690 1 0 |a ROWS-MLR 
700 1 |a Bacelo, D.E. 
700 1 |a Fioressi, S.E. 
700 1 |a Duchowicz, P.R. 
773 0 |d Elsevier Inc., 2019  |g v. 145  |h pp. 872-882  |p Microchem. J.  |x 0026265X  |w (AR-BaUEN)CENRE-2274  |t Microchemical Journal 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057588353&doi=10.1016%2fj.microc.2018.11.054&partnerID=40&md5=5eea72fb2972be708f8dd5cfd4e96893  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.microc.2018.11.054  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0026265X_v145_n_p872_Goodarzi  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0026265X_v145_n_p872_Goodarzi  |y Registro en la Biblioteca Digital 
961 |a paper_0026265X_v145_n_p872_Goodarzi  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86610