Application of the differential method to uniaxial gratings with an infinite number of refraction channels: Scalar case
The differential method (also called the C method) is applied to the diffraction of linearly polarized plane waves at a periodically corrugated boundary between vacuum and a linear, homogeneous, uniaxial, dielectric-magnetic medium characterized by hyperbolic dispersion equations. Numerical results...
Autor principal: | |
---|---|
Otros Autores: | , |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
2006
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
Sumario: | The differential method (also called the C method) is applied to the diffraction of linearly polarized plane waves at a periodically corrugated boundary between vacuum and a linear, homogeneous, uniaxial, dielectric-magnetic medium characterized by hyperbolic dispersion equations. Numerical results for sinusoidal gratings are presented and compared with those obtained by means of the Rayleigh method, showing that both the differential method and the Rayleigh method can fail to give adequate results for gratings supporting an infinite number of refracted Floquet harmonics. © 2005 Elsevier B.V. All rights reserved. |
---|---|
Bibliografía: | Shelby, R.A., Smith, D.R., Schultz, S., (2001) Science, 292, p. 77 Lakhtakia, A., McCall, M.W., Weiglhofer, W.S., (2003) Introduction to Complex Mediums for Optics and Electromagnetics, p. 347. , W.S. Weiglhofer A. Lakhtakia SPIE Press Bellingham, WA, USA MacKay, T.G., Lakhtakia, A., (2004) Phys. Rev. e, 69, p. 026602 Pendry, J.B., Smith, D.R., (2004) Phys. Today, 57, p. 37 Depine, R.A., Lakhtakia, A., (2005) New J. Phys., 7, p. 158 Smith, D.R., Schurig, D., (2003) Phys. Rev. Lett., 90, p. 077405 Ramakrishna, S.A., (2005) Rep. Progr. Phys., 68, p. 449 Lakhtakia, A., Sherwin, J.A., (2003) Int. J. Infrared Millim. Waves, 24, p. 19 Chen, H.C., (1983) Theory of Electromagnetic Waves: A Coordinate-free Approach, , McGraw-Hill New York, NY, USA Depine, R.A., Lakhtakia, A., (2004) Opt. Commun., 233, p. 277 Depine, R.A., Lakhtakia, A., (2004) Phys. Rev. e, 69, p. 057602 Depine, R.A., Lakhtakia, A., (2005) Optik, 116, p. 31 Depine, R.A., Lakhtakia, A., Smith, D.R., (2005) Phys. Lett. A, 337, p. 155 Chandezon, J., Dupuis, M., Cornet, G., Maystre, D., (1982) J. Opt. Soc. Am., 72, p. 839 Inchaussandague, M.E., Depine, R.A., (1996) Phys. Rev. e, 54, p. 2899 Inchaussandague, M.E., Depine, R.A., (1997) J. Mod. Opt., 44, p. 1 Li, L., (1999) J. Opt. Soc. Am. A, 16, p. 2521 Li, L., Chandezon, J., Granet, G., Plumey, J.P., (1999) Appl. Opt., 38, p. 304 Taflove, A., Hagness, S., (2005) Computational Electrodynamics: The Finite-difference Time-domain Method, , third ed. Artech House Boston, MA, USA |
ISSN: | 00304018 |
DOI: | 10.1016/j.optcom.2005.07.067 |