Application of the differential method to uniaxial gratings with an infinite number of refraction channels: Scalar case

The differential method (also called the C method) is applied to the diffraction of linearly polarized plane waves at a periodically corrugated boundary between vacuum and a linear, homogeneous, uniaxial, dielectric-magnetic medium characterized by hyperbolic dispersion equations. Numerical results...

Descripción completa

Detalles Bibliográficos
Autor principal: Depine, Ricardo Angel
Otros Autores: Inchaussandague, M.E, Lakhtakia, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2006
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:The differential method (also called the C method) is applied to the diffraction of linearly polarized plane waves at a periodically corrugated boundary between vacuum and a linear, homogeneous, uniaxial, dielectric-magnetic medium characterized by hyperbolic dispersion equations. Numerical results for sinusoidal gratings are presented and compared with those obtained by means of the Rayleigh method, showing that both the differential method and the Rayleigh method can fail to give adequate results for gratings supporting an infinite number of refracted Floquet harmonics. © 2005 Elsevier B.V. All rights reserved.
Bibliografía:Shelby, R.A., Smith, D.R., Schultz, S., (2001) Science, 292, p. 77
Lakhtakia, A., McCall, M.W., Weiglhofer, W.S., (2003) Introduction to Complex Mediums for Optics and Electromagnetics, p. 347. , W.S. Weiglhofer A. Lakhtakia SPIE Press Bellingham, WA, USA
MacKay, T.G., Lakhtakia, A., (2004) Phys. Rev. e, 69, p. 026602
Pendry, J.B., Smith, D.R., (2004) Phys. Today, 57, p. 37
Depine, R.A., Lakhtakia, A., (2005) New J. Phys., 7, p. 158
Smith, D.R., Schurig, D., (2003) Phys. Rev. Lett., 90, p. 077405
Ramakrishna, S.A., (2005) Rep. Progr. Phys., 68, p. 449
Lakhtakia, A., Sherwin, J.A., (2003) Int. J. Infrared Millim. Waves, 24, p. 19
Chen, H.C., (1983) Theory of Electromagnetic Waves: A Coordinate-free Approach, , McGraw-Hill New York, NY, USA
Depine, R.A., Lakhtakia, A., (2004) Opt. Commun., 233, p. 277
Depine, R.A., Lakhtakia, A., (2004) Phys. Rev. e, 69, p. 057602
Depine, R.A., Lakhtakia, A., (2005) Optik, 116, p. 31
Depine, R.A., Lakhtakia, A., Smith, D.R., (2005) Phys. Lett. A, 337, p. 155
Chandezon, J., Dupuis, M., Cornet, G., Maystre, D., (1982) J. Opt. Soc. Am., 72, p. 839
Inchaussandague, M.E., Depine, R.A., (1996) Phys. Rev. e, 54, p. 2899
Inchaussandague, M.E., Depine, R.A., (1997) J. Mod. Opt., 44, p. 1
Li, L., (1999) J. Opt. Soc. Am. A, 16, p. 2521
Li, L., Chandezon, J., Granet, G., Plumey, J.P., (1999) Appl. Opt., 38, p. 304
Taflove, A., Hagness, S., (2005) Computational Electrodynamics: The Finite-difference Time-domain Method, , third ed. Artech House Boston, MA, USA
ISSN:00304018
DOI:10.1016/j.optcom.2005.07.067