Induced current in quantum and classical ratchets

In a previous work, we described transport in a classical, externally driven, overdamped ratchet. A transport current arises under two possible conditions: either by increasing the external driving or by adding an optimal amount of noise when the system operates below threshold. In this work, we stu...

Descripción completa

Detalles Bibliográficos
Autor principal: Carusela, María Florencia
Otros Autores: Fendrik, A.J, Romanelli, L.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: World Scientific Publishing Co. Pte Ltd 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:In a previous work, we described transport in a classical, externally driven, overdamped ratchet. A transport current arises under two possible conditions: either by increasing the external driving or by adding an optimal amount of noise when the system operates below threshold. In this work, we study the underdamped case. In order to obtain transport it is necessary for the presence of both - a damping mechanism and the lack of symmetries in the potential. Some interesting properties were found: under particular conditions the system could be considered as a mass separation device, and for a specific range of the control parameter, the maximum Lyapunov exponent is reduced when noise is added to the system. We also study analytically and numerically the quantum analog of the same system and explore the conditions to find transport. © 2010 World Scientific Publishing Company.
Bibliografía:Dean Astumian, R., Bier, M., Fluctuation driven ratchets: Molecular motors (1994) Physical Review Letters, 72 (11), pp. 1766-1769
Bier, M., Brownian ratchets in physics and biology (1997) Contemporary Physics, 38 (6), pp. 371-379
Caldeira, A.O., Leggett, A.L., Quantum tunneling in a dissipative system (1983) Ann. Phys., 149, p. 374
Carlo, G.G., Benenti, G., Casati, G., Shepelyansky, D.L., Quantum ratchets in dissipative chaotic systems (2005) Physical Review Letters, 94 (16), pp. 1-4. , http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype= pdf&id=PRLTAO000094000016164101000001&idtype=cvips, DOI 10.1103/PhysRevLett.94.164101, 164101
Carusela, M.F., Fendrik, A.J., Romanelli, L., Transport and dynamical properties of inertial ratchets (2008) Phys. A, 388, p. 19
Denisov, S., Kohler, S., Hänggi, P., Underdamped quantum ratchets: Attractors and currents (2008) EPL, 85, p. 40003
Denisov, S., Morales-Molina, L., Flach, S., Hanggi, P., Periodically driven quantum ratchets: Symmetries and resonances (2007) Physical Review A - Atomic, Molecular, and Optical Physics, 75 (6), p. 063424. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevA.75.063424&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevA.75.063424
Faucheux, L.P., Bourdieu, L.S., Kaplan, P.D., Libchaber, A.J., Optical thermal ratchet (1995) Phys. Rev. Lett., 74, p. 1504
Fendrik, A.J., Romanelli, L., Perazzo, R.P.J., Stochastic resonance and Brownian ratchets (2006) Physica A: Statistical Mechanics and its Applications, 359 (1-4), pp. 75-84. , DOI 10.1016/j.physa.2005.04.035, PII S0378437105004425
Flach, S., Yevtushenko, O., Zolotaryuk, Y., Directed current due to broken time-space symmetry (2000) Phys. Rev. Lett., 84, p. 2358
Harmer, G.P., Abbott, D., Parrondo's paradox (1999) Stat. Sci., 14, p. 206
Holder, B.P., Reichl, L.E., Avoided crossings in driven systems (2005) Phys. Rev. A, 72, p. 043408
Jung, P., Kissner, J.G., Hänggi, P., Regular and chaotic transport in asymmetric periodic potentials: Inertia ratchets (1996) Phys. Rev. Lett., 76, p. 3436
Larrondo, H.A., Family, F., Arizmendi, C.M., Control of current reversal in single and multiparticle inertia ratchets (2002) Physica A: Statistical Mechanics and its Applications, 303 (1-2), pp. 67-78. , DOI 10.1016/S0378-4371(01)00485-X, PII S037843710100485X
Lindblad, G., On the generators of quantum dynamical semigroups (1976) Commun. Math. Phys., 48, p. 119
Marchesoni, F., Savel'ev, S., Nori, F., Achieving optimal rectification using underdamped rocked ratchets (2006) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 73 (2), p. 021102. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevE.73.021102&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevE.73.021102
Mateos, J.K., Chaotic transport and current reversal in deterministic ratchets (2000) Phys. Rev. Lett., 84, p. 258
Parrondo, J.M., JimenezCisneros, B., (2003) Paradoxical Games and Brownian Thermal Engines, , condmat/0309053v2
Popescu, M.N., Arizmendi, Salas-Brito, A.L., Family, F., Disorder induced diffusive transport in ratchets (2000) Phys. Rev. Lett., 85, p. 3321
Rousselet, J., Salome, L., Ajdari, A., Prost, J., Directional motion of brownian particles induced by a periodic asymmetric potential (1994) Nature, 370 (6489), pp. 446-448. , DOI 10.1038/370446a0
Takahashi, K., Saitô, N., Chaos and husimi distribution function in quantum mechanics (1985) Phys. Rev. Lett., 55, p. 645
Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A., Determining lyapunov exponents from a time series (1984) Physica, 16, p. 285
ISSN:02181274
DOI:10.1142/S0218127410025703