Induced current in quantum and classical ratchets
In a previous work, we described transport in a classical, externally driven, overdamped ratchet. A transport current arises under two possible conditions: either by increasing the external driving or by adding an optimal amount of noise when the system operates below threshold. In this work, we stu...
Autor principal: | |
---|---|
Otros Autores: | , |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
World Scientific Publishing Co. Pte Ltd
2010
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
Sumario: | In a previous work, we described transport in a classical, externally driven, overdamped ratchet. A transport current arises under two possible conditions: either by increasing the external driving or by adding an optimal amount of noise when the system operates below threshold. In this work, we study the underdamped case. In order to obtain transport it is necessary for the presence of both - a damping mechanism and the lack of symmetries in the potential. Some interesting properties were found: under particular conditions the system could be considered as a mass separation device, and for a specific range of the control parameter, the maximum Lyapunov exponent is reduced when noise is added to the system. We also study analytically and numerically the quantum analog of the same system and explore the conditions to find transport. © 2010 World Scientific Publishing Company. |
---|---|
Bibliografía: | Dean Astumian, R., Bier, M., Fluctuation driven ratchets: Molecular motors (1994) Physical Review Letters, 72 (11), pp. 1766-1769 Bier, M., Brownian ratchets in physics and biology (1997) Contemporary Physics, 38 (6), pp. 371-379 Caldeira, A.O., Leggett, A.L., Quantum tunneling in a dissipative system (1983) Ann. Phys., 149, p. 374 Carlo, G.G., Benenti, G., Casati, G., Shepelyansky, D.L., Quantum ratchets in dissipative chaotic systems (2005) Physical Review Letters, 94 (16), pp. 1-4. , http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype= pdf&id=PRLTAO000094000016164101000001&idtype=cvips, DOI 10.1103/PhysRevLett.94.164101, 164101 Carusela, M.F., Fendrik, A.J., Romanelli, L., Transport and dynamical properties of inertial ratchets (2008) Phys. A, 388, p. 19 Denisov, S., Kohler, S., Hänggi, P., Underdamped quantum ratchets: Attractors and currents (2008) EPL, 85, p. 40003 Denisov, S., Morales-Molina, L., Flach, S., Hanggi, P., Periodically driven quantum ratchets: Symmetries and resonances (2007) Physical Review A - Atomic, Molecular, and Optical Physics, 75 (6), p. 063424. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevA.75.063424&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevA.75.063424 Faucheux, L.P., Bourdieu, L.S., Kaplan, P.D., Libchaber, A.J., Optical thermal ratchet (1995) Phys. Rev. Lett., 74, p. 1504 Fendrik, A.J., Romanelli, L., Perazzo, R.P.J., Stochastic resonance and Brownian ratchets (2006) Physica A: Statistical Mechanics and its Applications, 359 (1-4), pp. 75-84. , DOI 10.1016/j.physa.2005.04.035, PII S0378437105004425 Flach, S., Yevtushenko, O., Zolotaryuk, Y., Directed current due to broken time-space symmetry (2000) Phys. Rev. Lett., 84, p. 2358 Harmer, G.P., Abbott, D., Parrondo's paradox (1999) Stat. Sci., 14, p. 206 Holder, B.P., Reichl, L.E., Avoided crossings in driven systems (2005) Phys. Rev. A, 72, p. 043408 Jung, P., Kissner, J.G., Hänggi, P., Regular and chaotic transport in asymmetric periodic potentials: Inertia ratchets (1996) Phys. Rev. Lett., 76, p. 3436 Larrondo, H.A., Family, F., Arizmendi, C.M., Control of current reversal in single and multiparticle inertia ratchets (2002) Physica A: Statistical Mechanics and its Applications, 303 (1-2), pp. 67-78. , DOI 10.1016/S0378-4371(01)00485-X, PII S037843710100485X Lindblad, G., On the generators of quantum dynamical semigroups (1976) Commun. Math. Phys., 48, p. 119 Marchesoni, F., Savel'ev, S., Nori, F., Achieving optimal rectification using underdamped rocked ratchets (2006) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 73 (2), p. 021102. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevE.73.021102&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevE.73.021102 Mateos, J.K., Chaotic transport and current reversal in deterministic ratchets (2000) Phys. Rev. Lett., 84, p. 258 Parrondo, J.M., JimenezCisneros, B., (2003) Paradoxical Games and Brownian Thermal Engines, , condmat/0309053v2 Popescu, M.N., Arizmendi, Salas-Brito, A.L., Family, F., Disorder induced diffusive transport in ratchets (2000) Phys. Rev. Lett., 85, p. 3321 Rousselet, J., Salome, L., Ajdari, A., Prost, J., Directional motion of brownian particles induced by a periodic asymmetric potential (1994) Nature, 370 (6489), pp. 446-448. , DOI 10.1038/370446a0 Takahashi, K., Saitô, N., Chaos and husimi distribution function in quantum mechanics (1985) Phys. Rev. Lett., 55, p. 645 Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A., Determining lyapunov exponents from a time series (1984) Physica, 16, p. 285 |
ISSN: | 02181274 |
DOI: | 10.1142/S0218127410025703 |