Analysis and design of scalable pre-processing techniques of instances for imbalanced Big Data problems : Applications in humanitarian emergencies situations
The enormous volume of data from different sources, really varied in its typology, generated and processed at great speed, is known as Big Data. The importance of data lies in extracting knowledge from it. Hence, being able to take advantage of a large amount of data allows us to explore and better...
Autor principal: | Basgall, María José |
---|---|
Formato: | Articulo Contribucion a revista |
Lenguaje: | Inglés |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/146935 |
Aporte de: |
Ejemplares similares
-
SMOTE-BD: An Exact and Scalable Oversampling Method for Imbalanced Classification in Big Data
por: Basgall, María José, et al.
Publicado: (2018) -
Análisis y diseño de técnicas de preprocesamiento de instancias escalables para problemas no balanceados en Big Data : Aplicaciones en situaciones de emergencias humanitarias
por: Basgall, María José
Publicado: (2022) -
An analysis of local and global solutions to address Big Data imbalanced classification: a case study with SMOTE preprocessing
por: Basgall, María José, et al.
Publicado: (2019) -
FDR²-BD: A Fast Data Reduction Recommendation Tool for Tabular Big Data Classification Problems
por: Basgall, María, et al.
Publicado: (2021) -
SMOTE-BD: An Exact and Scalable Oversampling Method for Imbalanced Classification in Big Data
por: Basgall, María José, et al.
Publicado: (2018)