Optimal shift invariant spaces and their Parseval frame generators

Given a set of functions F = {f1, ..., fm} ⊂ L2 (Rd), we study the problem of finding the shift-invariant space V with n generators {φ1, ..., φn} that is "closest" to the functions of F in the sense thatV = under(arg min, V′ ∈ Vn) underover(∑, i = 1, m) wi {norm of matrix} fi - PV′ fi {nor...

Descripción completa

Detalles Bibliográficos
Autores principales: Aldroubi, A., Cabrelli, C., Hardin, D., Molter, U.
Formato: Artículo publishedVersion
Publicado: 2007
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_10635203_v23_n2_p273_Aldroubi
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_10635203_v23_n2_p273_Aldroubi_oai
Aporte de:
id I28-R145-paper_10635203_v23_n2_p273_Aldroubi_oai
record_format dspace
spelling I28-R145-paper_10635203_v23_n2_p273_Aldroubi_oai2024-08-16 Aldroubi, A. Cabrelli, C. Hardin, D. Molter, U. 2007 Given a set of functions F = {f1, ..., fm} ⊂ L2 (Rd), we study the problem of finding the shift-invariant space V with n generators {φ1, ..., φn} that is "closest" to the functions of F in the sense thatV = under(arg min, V′ ∈ Vn) underover(∑, i = 1, m) wi {norm of matrix} fi - PV′ fi {norm of matrix}2, where wis are positive weights, and Vn is the set of all shift-invariant spaces that can be generated by n or less generators. The Eckart-Young theorem uses the singular value decomposition to provide a solution to a related problem in finite dimension. We transform the problem under study into an uncountable set of finite dimensional problems each of which can be solved using an extension of the Eckart-Young theorem. We prove that the finite dimensional solutions can be patched together and transformed to obtain the optimal shift-invariant space solution to the original problem, and we produce a Parseval frame for the optimal space. A typical application is the problem of finding a shift-invariant space model that describes a given class of signals or images (e.g., the class of chest X-rays), from the observation of a set of m signals or images f1, ..., fm, which may be theoretical samples, or experimental data. © 2007 Elsevier Inc. All rights reserved. Fil:Cabrelli, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Molter, U. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_10635203_v23_n2_p273_Aldroubi info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Appl Comput Harmonic Anal 2007;23(2):273-283 Optimal shift invariant spaces and their Parseval frame generators info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_10635203_v23_n2_p273_Aldroubi_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
description Given a set of functions F = {f1, ..., fm} ⊂ L2 (Rd), we study the problem of finding the shift-invariant space V with n generators {φ1, ..., φn} that is "closest" to the functions of F in the sense thatV = under(arg min, V′ ∈ Vn) underover(∑, i = 1, m) wi {norm of matrix} fi - PV′ fi {norm of matrix}2, where wis are positive weights, and Vn is the set of all shift-invariant spaces that can be generated by n or less generators. The Eckart-Young theorem uses the singular value decomposition to provide a solution to a related problem in finite dimension. We transform the problem under study into an uncountable set of finite dimensional problems each of which can be solved using an extension of the Eckart-Young theorem. We prove that the finite dimensional solutions can be patched together and transformed to obtain the optimal shift-invariant space solution to the original problem, and we produce a Parseval frame for the optimal space. A typical application is the problem of finding a shift-invariant space model that describes a given class of signals or images (e.g., the class of chest X-rays), from the observation of a set of m signals or images f1, ..., fm, which may be theoretical samples, or experimental data. © 2007 Elsevier Inc. All rights reserved.
format Artículo
Artículo
publishedVersion
author Aldroubi, A.
Cabrelli, C.
Hardin, D.
Molter, U.
spellingShingle Aldroubi, A.
Cabrelli, C.
Hardin, D.
Molter, U.
Optimal shift invariant spaces and their Parseval frame generators
author_facet Aldroubi, A.
Cabrelli, C.
Hardin, D.
Molter, U.
author_sort Aldroubi, A.
title Optimal shift invariant spaces and their Parseval frame generators
title_short Optimal shift invariant spaces and their Parseval frame generators
title_full Optimal shift invariant spaces and their Parseval frame generators
title_fullStr Optimal shift invariant spaces and their Parseval frame generators
title_full_unstemmed Optimal shift invariant spaces and their Parseval frame generators
title_sort optimal shift invariant spaces and their parseval frame generators
publishDate 2007
url http://hdl.handle.net/20.500.12110/paper_10635203_v23_n2_p273_Aldroubi
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_10635203_v23_n2_p273_Aldroubi_oai
work_keys_str_mv AT aldroubia optimalshiftinvariantspacesandtheirparsevalframegenerators
AT cabrellic optimalshiftinvariantspacesandtheirparsevalframegenerators
AT hardind optimalshiftinvariantspacesandtheirparsevalframegenerators
AT molteru optimalshiftinvariantspacesandtheirparsevalframegenerators
_version_ 1809357228547768320