Conjuntos mal distribuidos sobre cuerpos globales y conjuntos excepcionales en geometría diofántica
Esta tesis concierne el estudio de la densidad de puntos racionales en variades algebraicas y conjuntos definibles en estructuras o-minimales. La estrategia consiste en probar que los puntos racionales de estos conjuntos est´an mal distribuidos en clases residuales para muchos módulos primos. Primer...
Autor principal: | |
---|---|
Otros Autores: | |
Formato: | Tesis doctoral publishedVersion |
Lenguaje: | Español |
Publicado: |
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
2019
|
Materias: | |
Acceso en línea: | https://hdl.handle.net/20.500.12110/tesis_n6660_Paredes https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=aextesis&d=tesis_n6660_Paredes_oai |
Aporte de: |
Sumario: | Esta tesis concierne el estudio de la densidad de puntos racionales en variades algebraicas y conjuntos definibles en estructuras o-minimales. La estrategia consiste en probar que los puntos racionales de estos conjuntos est´an mal distribuidos en clases residuales para muchos módulos primos. Primero, probamos que un conjunto de puntos afines o proyectivos con coordenadas en un cuerpo global, de altura acotada que ocupa pocas clases residuales para muchos módulos primos debe estar esencialmente contenido en el conjunto de ceros de un polinomio de grado y coeficientes de altura peque˜nos. Esto generaliza resultados de Walsh. Luego, aplicamos para estudiar una conjetura de Wilkie acerca de la distribución de los puntos racionales en ciertas estructuras o-minimales, y probamos que esta conjetura es equivalente a que ciertos conjuntos de puntos racionales de altura acotada estén mal distribuidos a nivel de clases residuales para muchos primos. |
---|