The dependence of the first eigenvalue of the infinity laplacian with respect to the domain
In this paper we study the dependence of the first eigenvalue of the infinity Laplace with respect to the domain. We prove that this first eigenvalue is continuous under some weak convergence conditions which are fulfilled when a sequence of domains converges in Hausdorff distance. Moreover, it is L...
Autor principal: | Rossi, Julio Daniel |
---|---|
Publicado: |
2014
|
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00170895_v56_n2_p241_Navarro http://hdl.handle.net/20.500.12110/paper_00170895_v56_n2_p241_Navarro |
Aporte de: |
Ejemplares similares
-
The dependence of the first eigenvalue of the infinity laplacian with respect to the domain
por: Navarro, J.C., et al. -
Tug-of-war games and the infinity laplacian with spatial dependence
por: Rossi, Julio Daniel
Publicado: (2013) -
Large solutions for the infinity Laplacian
por: Rossi, Julio Daniel
Publicado: (2008) -
Tug-of-war games and the infinity laplacian with spatial dependence
por: Gómez, I., et al. -
Optimal regularity for the pseudo infinity Laplacian
por: Rossi, Julio Daniel
Publicado: (2007)