Orbits of non-elliptic disc automorphisms on H p

Motivated by the Invariant Subspace Problem, we describe explicitly the closed subspace H 2 generated by the limit points in the H 2 norm of the orbit of a thin Blaschke product B under composition operators C φ induced by non-elliptic automorphisms. This description exhibits a surprising connection...

Descripción completa

Detalles Bibliográficos
Publicado: 2012
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v388_n2_p1013_GallardoGutierrez
http://hdl.handle.net/20.500.12110/paper_0022247X_v388_n2_p1013_GallardoGutierrez
Aporte de:
id paper:paper_0022247X_v388_n2_p1013_GallardoGutierrez
record_format dspace
spelling paper:paper_0022247X_v388_n2_p1013_GallardoGutierrez2023-06-08T14:47:55Z Orbits of non-elliptic disc automorphisms on H p Blaschke products Eigenfunctions of composition operators Invariant subspaces Motivated by the Invariant Subspace Problem, we describe explicitly the closed subspace H 2 generated by the limit points in the H 2 norm of the orbit of a thin Blaschke product B under composition operators C φ induced by non-elliptic automorphisms. This description exhibits a surprising connection to model spaces. Finally, we give a constructive characterization of the C φ-eigenfunctions in H p for 1≤p≤∞. © 2011 Elsevier Inc. 2012 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v388_n2_p1013_GallardoGutierrez http://hdl.handle.net/20.500.12110/paper_0022247X_v388_n2_p1013_GallardoGutierrez
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Blaschke products
Eigenfunctions of composition operators
Invariant subspaces
spellingShingle Blaschke products
Eigenfunctions of composition operators
Invariant subspaces
Orbits of non-elliptic disc automorphisms on H p
topic_facet Blaschke products
Eigenfunctions of composition operators
Invariant subspaces
description Motivated by the Invariant Subspace Problem, we describe explicitly the closed subspace H 2 generated by the limit points in the H 2 norm of the orbit of a thin Blaschke product B under composition operators C φ induced by non-elliptic automorphisms. This description exhibits a surprising connection to model spaces. Finally, we give a constructive characterization of the C φ-eigenfunctions in H p for 1≤p≤∞. © 2011 Elsevier Inc.
title Orbits of non-elliptic disc automorphisms on H p
title_short Orbits of non-elliptic disc automorphisms on H p
title_full Orbits of non-elliptic disc automorphisms on H p
title_fullStr Orbits of non-elliptic disc automorphisms on H p
title_full_unstemmed Orbits of non-elliptic disc automorphisms on H p
title_sort orbits of non-elliptic disc automorphisms on h p
publishDate 2012
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v388_n2_p1013_GallardoGutierrez
http://hdl.handle.net/20.500.12110/paper_0022247X_v388_n2_p1013_GallardoGutierrez
_version_ 1768544625613602816