Equivalence and s-equivalence of vector-tensor Lagrangians

It will be proven that if a gauge-invariant Lagrangian density having the local form L = L(gij;Ai;Aij) is such that its Euler-Lagrange equations Ei(L) = 0 have the same set of solutions as Ei(L0) = 0, where L0 = g1/2F ijFij, then L and cL0 are equivalent for same constant c, i.e., Ei(L) = Ei(cL0). F...

Descripción completa

Detalles Bibliográficos
Autores principales: Noriega, Ricardo José, Schifini, Claudio Gabriel
Publicado: 1991
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222488_v32_n8_p2063_Lopez
http://hdl.handle.net/20.500.12110/paper_00222488_v32_n8_p2063_Lopez
Aporte de:
Descripción
Sumario:It will be proven that if a gauge-invariant Lagrangian density having the local form L = L(gij;Ai;Aij) is such that its Euler-Lagrange equations Ei(L) = 0 have the same set of solutions as Ei(L0) = 0, where L0 = g1/2F ijFij, then L and cL0 are equivalent for same constant c, i.e., Ei(L) = Ei(cL0). From a previous result it follows that L = cL0 + D + eg1/2, where D is a divergence and e is a constant. © 1991 American Institute of Physics.