Affine integral geometry and convex bodies
Given a convex body Q in Euclidean n‐dimensional space, the affine invariant measure of the set of pairs of parallel hyperplanes containing Q is an affine invariant J(Q) of Q, which, for ellipsoids, parallelepipeds and possibly for simplices of any dimensions, is proportional to V−1, where V represe...
Publicado: |
1988
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222720_v151_n3_p229_Santalo http://hdl.handle.net/20.500.12110/paper_00222720_v151_n3_p229_Santalo |
Aporte de: |
Ejemplares similares
-
Affine integral geometry and convex bodies
por: Santaló, L.A. -
The Minimal Volume of Simplices Containing a Convex Body
Publicado: (2019) -
The Minimal Volume of Simplices Containing a Convex Body
por: Galicer, D., et al. -
Razón de volumen entre cuerpos convexos.
por: Merzbacher, Diego Mariano
Publicado: (2019) -
Razón de volumen entre cuerpos convexos.
por: Merzbacher, Diego Mariano
Publicado: (2019)