On the existence of extremals for the Sobolev trace embedding theorem with critical exponent
In this paper, the existence problem is studied for extremals of the Sobolev trace inequality W1,p(Ω) → L p(∂Ω), where Ω is abounded smooth domain in ℝN, p* = p(N - 1)/(N - p) is the critical Sobolev exponent, and 1 < p < N. © 2005 London Mathematical Society.
Autor principal: | Rossi, Julio Daniel |
---|---|
Publicado: |
2005
|
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00246093_v37_n1_p119_Bonder http://hdl.handle.net/20.500.12110/paper_00246093_v37_n1_p119_Bonder |
Aporte de: |
Ejemplares similares
-
On the existence of extremals for the Sobolev trace embedding theorem with critical exponent
por: Bonder, J.F., et al. -
On the Sobolev embedding theorem for variable exponent spaces in the critical range
por: Fernandez Bonder, Julian, et al.
Publicado: (2012) -
On the Sobolev embedding theorem for variable exponent spaces in the critical range
por: Fernández Bonder, J., et al. -
Symmetry properties for the extremals of the Sobolev trace embedding
por: Rossi, Julio Daniel
Publicado: (2004) -
On the Sobolev trace Theorem for variable exponent spaces in the critical range
por: Fernandez Bonder, Julian, et al.
Publicado: (2014)