On the electronic distribution for extended systems: the particle numbers as a statistical magnitude
The number of particles or composite particles (q-ons) and their relation to the occupation number averages for extended systems (molecules and solids) are obtained statistically. Formulae are elucidated for the case of a closed-shell SCF wavefunction and for general multiconfigurational (MC-SCF) wa...
Autores principales: | Bochicchio, Roberto Carlos, Medrano, Jorge A. |
---|---|
Publicado: |
1989
|
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01661280_v201_nC_p177_Bochicchio http://hdl.handle.net/20.500.12110/paper_01661280_v201_nC_p177_Bochicchio |
Aporte de: |
Ejemplares similares
-
On the electronic distribution for extended systems: the particle numbers as a statistical magnitude
por: Bochicchio, R.C., et al. -
On the electronic distribution for extended systems: the particle numbers as a statistical magnitude
por: Bochicchio, Roberto Carlos
Publicado: (1989) -
On the electronic distribution for extended systems. Part II. Condensation and long-range-order correlations for fermion pairs
por: Bochicchio, Roberto Carlos
Publicado: (1990) -
On the electronic distribution for extended systems. Part II. Condensation and long-range-order correlations for fermion pairs
por: Bochicchio, Roberto Carlos
Publicado: (1990) -
On the non-integer number of particles in molecular system domains: treatment and description
por: Bochicchio, Roberto Carlos
Publicado: (2015)