A dimension reduction scheme for the computation of optimal unions of subspaces
Given a set of points F in a high dimensional space, the problem of finding a union of subspaces ∪ iV i ⊆ ℝ N that best explains the data F increases dramatically with the dimension of ℝ N. In this article, we study a class of transformations that map the problem into another one in lower dimension....
Autores principales: | Anastasio, Magalí, Cabrelli, Carlos Alberto, Molter, Ursula Maria |
---|---|
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15306429_v10_n1-2_p135_Aldroubi http://hdl.handle.net/20.500.12110/paper_15306429_v10_n1-2_p135_Aldroubi |
Aporte de: |
Ejemplares similares
-
A dimension reduction scheme for the computation of optimal unions of subspaces
por: Aldroubi, A., et al. -
Optimal non-linear models for sparsity and sampling
por: Aldroubi, A., et al. -
A pairwise subspace projection method for multi-class linear dimension reduction
por: Tomassi, Diego
Publicado: (2012) -
Optimal non-linear models for sparsity and sampling
Publicado: (2008) -
Séminaire de probabilités XXXVI /
Publicado: (2003)