Artificial bee colony optimization for feature selection of traffic sign recognition
This paper proposes the application of a swarm intelligence algorithm called Artificial Bee Colony (ABC) for the feature selection to feed a Random Forest (RF) classifier aiming to recognise Traffic Signs. In this paper, the authors define and assess several fitness functions for the feature selecti...
Publicado: |
2017
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19479263_v8_n2_p50_DaSilva http://hdl.handle.net/20.500.12110/paper_19479263_v8_n2_p50_DaSilva |
Aporte de: |
Ejemplares similares
-
Artificial bee colony optimization for feature selection of traffic sign recognition
por: Da Silva, D.L., et al. -
Metaheuristics for feature selection in handwritten digit recognition
por: Seijas, Leticia María
Publicado: (2016) -
Metaheuristics for feature selection in handwritten digit recognition
por: Seijas, L.M., et al. -
Selecting Optimal Modular Structures using Particle Swarm Optimization
por: Durán, Orlando, et al.
Publicado: (2010) -
A Study of Convolutional Architectures for Handshape Recognition applied to Sign
Language
por: Quiroga, Facundo, et al.
Publicado: (2017)