On the loop space of a 2-category

Every small category C has a classifying space BC associated in a natural way. This construction can be extended to other contexts and set up a fruitful interaction between categorical structures and homotopy types. In this paper, we study the classifying space B2C of a 2-category C and prove that,...

Descripción completa

Detalles Bibliográficos
Autor principal: del Hoyo, M.L.
Formato: Artículo publishedVersion
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00224049_v216_n1_p28_delHoyo
Aporte de:
id paperaa:paper_00224049_v216_n1_p28_delHoyo
record_format dspace
spelling paperaa:paper_00224049_v216_n1_p28_delHoyo2023-06-12T16:44:51Z On the loop space of a 2-category J. Pure Appl. Algebra 2012;216(1):28-40 del Hoyo, M.L. Every small category C has a classifying space BC associated in a natural way. This construction can be extended to other contexts and set up a fruitful interaction between categorical structures and homotopy types. In this paper, we study the classifying space B2C of a 2-category C and prove that, under certain conditions, the loop space ΩcB2C can be recovered up to homotopy from the endomorphisms of a given object. We also present several subsidiary results that we develop to prove our main theorem. © 2011 Elsevier B.V. Fil:del Hoyo, M.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2012 info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion application/pdf eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00224049_v216_n1_p28_delHoyo
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
language Inglés
orig_language_str_mv eng
description Every small category C has a classifying space BC associated in a natural way. This construction can be extended to other contexts and set up a fruitful interaction between categorical structures and homotopy types. In this paper, we study the classifying space B2C of a 2-category C and prove that, under certain conditions, the loop space ΩcB2C can be recovered up to homotopy from the endomorphisms of a given object. We also present several subsidiary results that we develop to prove our main theorem. © 2011 Elsevier B.V.
format Artículo
Artículo
publishedVersion
author del Hoyo, M.L.
spellingShingle del Hoyo, M.L.
On the loop space of a 2-category
author_facet del Hoyo, M.L.
author_sort del Hoyo, M.L.
title On the loop space of a 2-category
title_short On the loop space of a 2-category
title_full On the loop space of a 2-category
title_fullStr On the loop space of a 2-category
title_full_unstemmed On the loop space of a 2-category
title_sort on the loop space of a 2-category
publishDate 2012
url http://hdl.handle.net/20.500.12110/paper_00224049_v216_n1_p28_delHoyo
work_keys_str_mv AT delhoyoml ontheloopspaceofa2category
_version_ 1769810168228347904