Thermal avalanche for blowup solutions of semilinear heat equations
We consider the semilinear heat equation ut = Δu + u p both in ℝN and in a bounded domain with homogeneous Dirichlet boundary conditions, with 1 < p < ps where ps is the Sobolev exponent. This problem has solutions with finite-time blowup; that is, for large enough initial data there e...
Autores principales: | Quirós, F., Rossi, J.D., Vázquez, J.L. |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00103640_v57_n1_p0059_Quiros |
Aporte de: |
Ejemplares similares
-
Thermal avalanche for blowup solutions of semilinear heat equations
Publicado: (2004) -
Complete blow-up and thermal avalanche for heat equations with nonlinear boundary conditions
por: Quirós, F., et al. -
Large solutions for a class of semilinear integro-differential equations with censored jumps
por: Rossi, J.D., et al. -
Complete blow-up and thermal avalanche for heat equations with nonlinear boundary conditions
Publicado: (2002) -
Asymptotic behaviour for a semilinear nonlocal equation
por: Pazoto, A.F., et al.