Binomial D-modules

We study quotients of the Weyl algebra by left ideals whose generators consist of an arbitrary Zd-graded binomial ideal I in C[∂1∂n] along with Euler operators defined by the grading and a parameter βεCd 2 Cd. We determine the parameters β for which these D-modules (i) are holonomic (equivalently, r...

Descripción completa

Detalles Bibliográficos
Autores principales: Dickenstein, A., Matusevich, L.F., Miller, E.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00127094_v151_n3_p1_Dickenstein
Aporte de:
id todo:paper_00127094_v151_n3_p1_Dickenstein
record_format dspace
spelling todo:paper_00127094_v151_n3_p1_Dickenstein2023-10-03T14:10:23Z Binomial D-modules Dickenstein, A. Matusevich, L.F. Miller, E. We study quotients of the Weyl algebra by left ideals whose generators consist of an arbitrary Zd-graded binomial ideal I in C[∂1∂n] along with Euler operators defined by the grading and a parameter βεCd 2 Cd. We determine the parameters β for which these D-modules (i) are holonomic (equivalently, regular holonomic, when I is standard-graded); (ii) decompose as direct sums indexed by the primary components of I; and (iii) have holonomic rank greater than the rank for generic β. In each of these three cases, the parameters in question are precisely those outside of a certain explicitly described affine subspace arrangement in Cd. In the special case of Horn hypergeometric D-modules, when I is a lattice basis ideal, we furthermore compute the generic holonomic rank combinatorially and write down a basis of solutions in terms of associated A-hypergeometric functions. Fundamental in this study is an explicit lattice point description of the primary components of an arbitrary binomial ideal in characteristic zero, which we derive from a characteristic-free combinatorial result on binomial ideals in affine semigroup rings. Effective methods can be derived for the computation of primary components of arbitrary binomial ideals and series solutions to classical Horn systems. Fil:Dickenstein, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00127094_v151_n3_p1_Dickenstein
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We study quotients of the Weyl algebra by left ideals whose generators consist of an arbitrary Zd-graded binomial ideal I in C[∂1∂n] along with Euler operators defined by the grading and a parameter βεCd 2 Cd. We determine the parameters β for which these D-modules (i) are holonomic (equivalently, regular holonomic, when I is standard-graded); (ii) decompose as direct sums indexed by the primary components of I; and (iii) have holonomic rank greater than the rank for generic β. In each of these three cases, the parameters in question are precisely those outside of a certain explicitly described affine subspace arrangement in Cd. In the special case of Horn hypergeometric D-modules, when I is a lattice basis ideal, we furthermore compute the generic holonomic rank combinatorially and write down a basis of solutions in terms of associated A-hypergeometric functions. Fundamental in this study is an explicit lattice point description of the primary components of an arbitrary binomial ideal in characteristic zero, which we derive from a characteristic-free combinatorial result on binomial ideals in affine semigroup rings. Effective methods can be derived for the computation of primary components of arbitrary binomial ideals and series solutions to classical Horn systems.
format JOUR
author Dickenstein, A.
Matusevich, L.F.
Miller, E.
spellingShingle Dickenstein, A.
Matusevich, L.F.
Miller, E.
Binomial D-modules
author_facet Dickenstein, A.
Matusevich, L.F.
Miller, E.
author_sort Dickenstein, A.
title Binomial D-modules
title_short Binomial D-modules
title_full Binomial D-modules
title_fullStr Binomial D-modules
title_full_unstemmed Binomial D-modules
title_sort binomial d-modules
url http://hdl.handle.net/20.500.12110/paper_00127094_v151_n3_p1_Dickenstein
work_keys_str_mv AT dickensteina binomialdmodules
AT matusevichlf binomialdmodules
AT millere binomialdmodules
_version_ 1807317615509504000