The inverse Sieve problem in high dimensions
We show that if a big set of integer points S ⊆ [0, N] d, d > 1, occupies few residue classes mod p for many primes p, then it must essentially lie in the solution set of some polynomial equation of low degree. This answers a question of Helfgott and Venkatesh. © 2012.
Autor principal: | Walsh, M.N. |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00127094_v161_n10_p2001_Walsh |
Aporte de: |
Ejemplares similares
-
The inverse Sieve problem in high dimensions
por: Walsh, Miguel Nicolás
Publicado: (2012) -
Robust sieve estimators for functional canonical correlation analysis
por: Alvarez, A., et al. -
Robust sieve estimators for functional canonical correlation analysis
Publicado: (2019) -
Robust sieve estimators for functional canonical correlation analysis
por: Álvarez, Agustín, et al.
Publicado: (2024) -
Bubble Cap and Sieve Tower Sizing as Function of Permissible Pressure Drop
por: Teller, A. J.
Publicado: (1957)