Almost sure-sign convergence of Hardy-type Dirichlet series
Hartman proved in 1939 that the width of the largest possible strip in the complex plane on which a Dirichlet series ∑ nann− s is uniformly a.s.- sign convergent (i.e., ∑ nεnann− s converges uniformly for almost all sequences of signs εn = ±1) but does not convergent absolutely, equals 1/2. We study...
Autores principales: | Carando, D., Defant, A., Sevilla-Peris, P. |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00217670_v135_n1_p225_Carando |
Aporte de: |
Ejemplares similares
-
Almost sure-sign convergence of Hardy-type Dirichlet series
Publicado: (2018) -
Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces
por: Carando, D., et al. -
Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces
por: Carando, Daniel German
Publicado: (2014) -
The Dirichlet-Bohr radius
por: Carando, D., et al. -
On Dirichlet problems with singular nonlinearity of indefinite sign
por: Godoy, Tomás Fernando, et al.
Publicado: (2022)