On Lie algebra extensions in a symplectic framework
It is shown that the construction carried out by Cariñena and Ibort [J. Math. Phys. 29, 541–545 (1988)] involving nonsymplectic actions of Lie groups gives rise to “true” noncentral extensions of the corresponding Lie algebras. © 1997, American Institute of Physics. All rights reserved.
Autores principales: | Fernandez, J., Zuccalli, M. |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00222488_v38_n7_p3768_Fernandez |
Aporte de: |
Ejemplares similares
-
On Lie algebra extensions in a symplectic framework
Publicado: (1997) -
Central extensions of the algebra of formal pseudo-differential symbols via Hochschild (co)homology and quadratic symplectic Lie algebras
por: Beltran, J., et al. -
Central extensions of the algebra of formal pseudo-differential symbols via Hochschild (co)homology and quadratic symplectic Lie algebras
Publicado: (2018) -
QHWM of the orthogonal and symplectic types lie subalgebras of the lie algebra of the matrix quantum pseudo-differential operators
por: Batistelli, Karina Haydeé, et al.
Publicado: (2024) -
Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type II : Unipotent classes in symplectic groups
por: Andruskiewitsch, Nicolás, et al.
Publicado: (2016)