On the reduction formula of Feinberg and Pais

Feinberg and Pais have considered a "reduction" formula for the Fourier transform of functions which depend only on the hyperbolic distance. They have shown that the formula is valid in particular cases and stated that it should be valid in general. We show that it is valid for any causal...

Descripción completa

Detalles Bibliográficos
Autores principales: Bollini, C.G., Giambiagi, J.J., González Domínguez, A.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00222488_v6_n1_p165_Bollini
Aporte de:
id todo:paper_00222488_v6_n1_p165_Bollini
record_format dspace
spelling todo:paper_00222488_v6_n1_p165_Bollini2023-10-03T14:29:52Z On the reduction formula of Feinberg and Pais Bollini, C.G. Giambiagi, J.J. González Domínguez, A. Feinberg and Pais have considered a "reduction" formula for the Fourier transform of functions which depend only on the hyperbolic distance. They have shown that the formula is valid in particular cases and stated that it should be valid in general. We show that it is valid for any causal distribution and furthermore that it is actually an extension of the well-known Bochner Theorem on the Fourier transform of radial functions. Fil:Giambiagi, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:González Domínguez, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00222488_v6_n1_p165_Bollini
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description Feinberg and Pais have considered a "reduction" formula for the Fourier transform of functions which depend only on the hyperbolic distance. They have shown that the formula is valid in particular cases and stated that it should be valid in general. We show that it is valid for any causal distribution and furthermore that it is actually an extension of the well-known Bochner Theorem on the Fourier transform of radial functions.
format JOUR
author Bollini, C.G.
Giambiagi, J.J.
González Domínguez, A.
spellingShingle Bollini, C.G.
Giambiagi, J.J.
González Domínguez, A.
On the reduction formula of Feinberg and Pais
author_facet Bollini, C.G.
Giambiagi, J.J.
González Domínguez, A.
author_sort Bollini, C.G.
title On the reduction formula of Feinberg and Pais
title_short On the reduction formula of Feinberg and Pais
title_full On the reduction formula of Feinberg and Pais
title_fullStr On the reduction formula of Feinberg and Pais
title_full_unstemmed On the reduction formula of Feinberg and Pais
title_sort on the reduction formula of feinberg and pais
url http://hdl.handle.net/20.500.12110/paper_00222488_v6_n1_p165_Bollini
work_keys_str_mv AT bollinicg onthereductionformulaoffeinbergandpais
AT giambiagijj onthereductionformulaoffeinbergandpais
AT gonzalezdomingueza onthereductionformulaoffeinbergandpais
_version_ 1807323521216413696