On the reduction formula of Feinberg and Pais
Feinberg and Pais have considered a "reduction" formula for the Fourier transform of functions which depend only on the hyperbolic distance. They have shown that the formula is valid in particular cases and stated that it should be valid in general. We show that it is valid for any causal...
Autores principales: | , , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00222488_v6_n1_p165_Bollini |
Aporte de: |
id |
todo:paper_00222488_v6_n1_p165_Bollini |
---|---|
record_format |
dspace |
spelling |
todo:paper_00222488_v6_n1_p165_Bollini2023-10-03T14:29:52Z On the reduction formula of Feinberg and Pais Bollini, C.G. Giambiagi, J.J. González Domínguez, A. Feinberg and Pais have considered a "reduction" formula for the Fourier transform of functions which depend only on the hyperbolic distance. They have shown that the formula is valid in particular cases and stated that it should be valid in general. We show that it is valid for any causal distribution and furthermore that it is actually an extension of the well-known Bochner Theorem on the Fourier transform of radial functions. Fil:Giambiagi, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:González Domínguez, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00222488_v6_n1_p165_Bollini |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
Feinberg and Pais have considered a "reduction" formula for the Fourier transform of functions which depend only on the hyperbolic distance. They have shown that the formula is valid in particular cases and stated that it should be valid in general. We show that it is valid for any causal distribution and furthermore that it is actually an extension of the well-known Bochner Theorem on the Fourier transform of radial functions. |
format |
JOUR |
author |
Bollini, C.G. Giambiagi, J.J. González Domínguez, A. |
spellingShingle |
Bollini, C.G. Giambiagi, J.J. González Domínguez, A. On the reduction formula of Feinberg and Pais |
author_facet |
Bollini, C.G. Giambiagi, J.J. González Domínguez, A. |
author_sort |
Bollini, C.G. |
title |
On the reduction formula of Feinberg and Pais |
title_short |
On the reduction formula of Feinberg and Pais |
title_full |
On the reduction formula of Feinberg and Pais |
title_fullStr |
On the reduction formula of Feinberg and Pais |
title_full_unstemmed |
On the reduction formula of Feinberg and Pais |
title_sort |
on the reduction formula of feinberg and pais |
url |
http://hdl.handle.net/20.500.12110/paper_00222488_v6_n1_p165_Bollini |
work_keys_str_mv |
AT bollinicg onthereductionformulaoffeinbergandpais AT giambiagijj onthereductionformulaoffeinbergandpais AT gonzalezdomingueza onthereductionformulaoffeinbergandpais |
_version_ |
1807323521216413696 |