Hecke and sturm bounds for Hilbert modular forms over real quadratic fields

Let K be a real quadratic field and OK its ring of integers. Let Γ be a congruence subgroup of SL2(OK) and M(k1,k2)(Γ) be the finite dimensional space of Hilbert modular forms of weight (k1, k2) for Γ. Given a form f(z) ∈ M(k1,k2)(Γ), how many Fourier coefficients determine it uniquely in such space...

Descripción completa

Detalles Bibliográficos
Autores principales: Gil, J.I.B., Pacetti, A.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00255718_v86_n306_p1949_Gil
Aporte de:

Ejemplares similares