Hecke and sturm bounds for Hilbert modular forms over real quadratic fields
Let K be a real quadratic field and OK its ring of integers. Let Γ be a congruence subgroup of SL2(OK) and M(k1,k2)(Γ) be the finite dimensional space of Hilbert modular forms of weight (k1, k2) for Γ. Given a form f(z) ∈ M(k1,k2)(Γ), how many Fourier coefficients determine it uniquely in such space...
Autores principales: | Gil, J.I.B., Pacetti, A. |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00255718_v86_n306_p1949_Gil |
Aporte de: |
Ejemplares similares
-
Hecke and sturm bounds for Hilbert modular forms over real quadratic fields
por: Pacetti, Ariel Martin
Publicado: (2017) -
Proving modularity for a given elliptic curve over an imaginary quadratic field
por: Dieulefait, L., et al. -
Proving modularity for a given elliptic curve over an imaginary quadratic field
Publicado: (2010) -
Connectedness of hecke algebras and the rayuela conjecture: A path to functoriality and modularity
por: Pacetti, Ariel Martin
Publicado: (2015) -
Connectedness of hecke algebras and the rayuela conjecture: A path to functoriality and modularity
por: Dieulefait, L., et al.