Strange nonattracting chaotic sets, crises, and fluctuating lyapunov exponents
Chaotic attractors containing periodic orbits with different numbers of unstable directions display fluctuating Lyapunov exponents. We show that the existence of certain nonattracting chaotic sets inside the attractor guarantees the occurrence of this behavior in a persistent manner. These nonattrac...
Autor principal: | Dawson, S.P. |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00319007_v76_n23_p4348_Dawson |
Aporte de: |
Ejemplares similares
-
Strange nonattracting chaotic sets, crises, and fluctuating lyapunov exponents
Publicado: (1996) -
The Lyapunov exponents and the neighbourhood of periodic orbits
por: Carpintero, Daniel Diego, et al.
Publicado: (2020) -
Maximum Lyapunov exponent of highly excited finite systems
por: Balenzuela, P., et al. -
Local (in time) maximal Lyapunov exponents of fragmenting drops
por: Balenzuela, P., et al.
Publicado: (2000) -
Local (in time) maximal Lyapunov exponents of fragmenting drops
por: Balenzuela, P., et al.