Forecasting Multiple Time Series With One-Sided Dynamic Principal Components
We define one-sided dynamic principal components (ODPC) for time series as linear combinations of the present and past values of the series that minimize the reconstruction mean squared error. Usually dynamic principal components have been defined as functions of past and future values of the series...
Autores principales: | Peña, D., Smucler, E., Yohai, V.J. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_01621459_v_n_p_Pena |
Aporte de: |
Ejemplares similares
-
Forecasting Multiple Time Series With One-Sided Dynamic Principal Components
Publicado: (2019) -
Generalized Dynamic Principal Components
por: Peña, D., et al. -
Generalized Dynamic Principal Components
Publicado: (2016) -
Dimensional reduction, magnetic flux strings, and domain walls
por: Fosco, César Daniel, et al.
Publicado: (2000) -
Dualities and models in various dimensions
por: Moreno, Enrique Francisco, et al.
Publicado: (2021)