Finite rank perturbations in Pontryagin Spaces and a Sturm–Liouville problem with λ-rational boundary conditions
For selfadjoint operators A 1 and A 2 in a Pontryagin space Πκ such that the resolvent difference of A 1 and A 2 is n-dimensional it is shown that the dimensions of the spectral subspaces corresponding to open intervals in gaps of the essential spectrum differ at most by n+2κ. This is a natural exte...
Autores principales: | Behrndt, J., Philipp, F. |
---|---|
Formato: | SER |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_02550156_v263_n_p163_Behrndt |
Aporte de: |
Ejemplares similares
-
Finite rank perturbations in Pontryagin Spaces and a Sturm–Liouville problem with λ-rational boundary conditions
Publicado: (2018) -
The effect of finite rank perturbations on Jordan chains of linear operators
por: Behrndt, Jussi, et al.
Publicado: (2015) -
Finite Rank Perturbations of Linear Relations and Matrix Pencils
por: Leben, Leslie, et al.
Publicado: (2021) -
Sharp eigenvalue estimates for rank one perturbations of nonnegative operators in Krein spaces
por: Behrndt, Jussi, et al.
Publicado: (2016) -
A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights
por: Pinasco, Juan Pablo
Publicado: (2015)