On the behaviour of solutions to the Dirichlet problem for the p(x)-Laplacian when p(x) goes to 1 in a subdomain
In this paper we prove a stability result for some classes of elliptic problems involving variable exponents. More precisely, we consider the Dirichlet problem for an elliptic equation in a domain, which is the p-Laplacian equation, -div(∇up-2∇u) = f, in a subdomain Ω1 of Ω and the Laplace equation,...
Autores principales: | Mercaldo, A., Rossi, J.D., De León, S.S., Trombetti, C. |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_08934983_v25_n1-2_p53_Mercaldo |
Aporte de: |
Ejemplares similares
-
On the behaviour of solutions to the Dirichlet problem for the p(x)-Laplacian when p(x) goes to 1 in a subdomain
por: Rossi, Julio Daniel
Publicado: (2012) -
The behaviour of the p (x)-Laplacian eigenvalue problem as p (x) → ∞
por: Pérez-Llanos, M., et al.
Publicado: (2010) -
The behaviour of the p (x)-Laplacian eigenvalue problem as p (x) → ∞
por: Pérez-Llanos, M., et al. -
The behaviour of the p (x)-Laplacian eigenvalue problem as p (x) → ∞
por: Pérez-Llanos, M., et al.
Publicado: (2010) -
The behaviour of the p (x)-Laplacian eigenvalue problem as p (x) → ∞
por: Rossi, Julio Daniel
Publicado: (2010)