Dynamics of closed interfaces in two-dimensional Laplacian growth
We study the process of two-dimensional Laplacian growth in the limit of zero-surface tension for cases with a closed interface around a growing bubble (exterior problem with circular geometry). Using the time-dependent conformal map technique we obtain a class of fingerlike solutions that are chara...
Autores principales: | Ponce Dawson, S., Mineev-Weinstein, M. |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_1063651X_v57_n3_p3063_PonceDawson |
Aporte de: |
Ejemplares similares
-
Dynamics of closed interfaces in two-dimensional Laplacian growth
Publicado: (1998) -
Growth diversity in one dimensional fluctuating interfaces
por: Grynberg, Marcelo Daniel
Publicado: (2001) -
H2 regularity for the p(x)-Laplacian in two-dimensional convex domains
por: Del Pezzo, L.M., et al.
Publicado: (2014) -
H2 regularity for the p(x)-Laplacian in two-dimensional convex domains
por: Del Pezzo, L.M., et al. -
H2 regularity for the p(x)-Laplacian in two-dimensional convex domains
por: Del Pezzo, L.M., et al.
Publicado: (2014)