A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes
We present a formula for the degree of the discriminant of a smooth projective toric variety associated to a lattice polytope P, in terms of the number of integral points in the interior of dilates of faces of dimension greater or equal than {top left corner}dimP/2{top right corner}. © 2012.
Autores principales: | Dickenstein, A., Nill, B., Vergne, M. |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_1631073X_v350_n5-6_p229_Dickenstein |
Aporte de: |
Ejemplares similares
-
A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes
por: Dickenstein, Alicia Marcela
Publicado: (2012) -
Classifying smooth lattice polytopes via toric fibrations
por: Dickenstein, Alicia Marcela
Publicado: (2009) -
Classifying smooth lattice polytopes via toric fibrations
por: Dickenstein, A., et al.
Publicado: (2009) -
Classifying smooth lattice polytopes via toric fibrations
por: Dickenstein, A., et al. -
Classifying smooth lattice polytopes via toric fibrations
por: Dickenstein, A., et al.
Publicado: (2009)