Criticality of mostly informative samples: A Bayesian model selection approach
We discuss a Bayesian model selection approach to high-dimensional data in the deep under-sampling regime. The data is based on a representation of the possible discrete states s, as defined by the observer, and it consists of M observations of the state. This approach shows that, for a given sample...
Autores principales: | Haimovici, A., Marsili, M. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_17425468_v2015_n10_p_Haimovici |
Aporte de: |
Ejemplares similares
-
Criticality of mostly informative samples: A Bayesian model selection approach
Publicado: (2015) -
Data mining methods for the content analyst : an introduction to the computational analysis of content /
por: Leetaru, Kalev
Publicado: (2012) -
Bayesian isotonic changepoint analysis
por: Álvarez, Enrique Ernesto, et al.
Publicado: (2007) -
A solution to the ecological inference problem : reconstructing individual behavior from aggregate data /
por: King, Gary
Publicado: (1997) -
Bayesian analysis of stochastic process models
por: R�ios Insua, David, 1964-
Publicado: (2012)