Global change effects on plant communities are magnified by time and the number of global change factors imposed

Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of CDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting...

Descripción completa

Detalles Bibliográficos
Otros Autores: Komatsu, Kimberly J., Avolio, Meghan L., Lemoine, Nathan P., Chaneton, Enrique José, Tognetti, Pedro Maximiliano, Yahdjian, María Laura, Isbell, Forest, Grman, Emily
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/download/articulo/2019komatsu.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04759nab a22004217a 4500
001 20191115091411.0
003 AR-BaUFA
005 20231121095838.0
008 191115t2019 xxud||||o|||| 00| 0 eng d
999 |c 47747  |d 47747 
999 |d 47747 
999 |d 47747 
999 |d 47747 
999 |d 47747 
999 |d 47747 
022 |a 0027-8424 
024 |a 10.1073/pnas.1819027116 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a Global change effects on plant communities are magnified by time and the number of global change factors imposed 
520 |a Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of CDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term ( minor to 10 y). In contrast, long-term (major or equal to 10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity–ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously. 
653 |a COMMUNITY COMPOSITION 
653 |a GLOBAL CHANGE EXPERIMENTS 
653 |a HERBACEOUS PLANTS 
653 |a SPECIES RICHNESS 
700 1 |9 69746  |a Komatsu, Kimberly J.  |u Smithsonian Environmental Research Center, Edgewater. United States. 
700 1 |9 67226  |a Avolio, Meghan L.  |u Johns Hopkins University. Department of Earth and Planetary Sciences. Baltimore, United States. 
700 1 |a Lemoine, Nathan P.  |u Marquette University. Department of Biological Sciences. Milwaukee, United States.  |9 67171 
700 1 |9 6467  |a Chaneton, Enrique José  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. 
700 1 |9 12692  |a Tognetti, Pedro Maximiliano  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. 
700 1 |9 16176  |a Yahdjian, María Laura  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. 
700 1 |a Isbell, Forest  |u University of Minnesota. Department of Ecology, Evolution and Behavior. Saint Paul, United States.  |9 68527 
700 1 |9 67223  |a Grman, Emily  |u Eastern Michigan University. Department of Biology. Ypsilanti, United States. 
773 |t Proceedings of the National Academy of Sciences of the United States of America  |g vol.116, no.36 (2019), p.17867–17873, tbls., grafs.  |w SECS00040 
856 |f 2019komatsu  |i En Internet:  |q application/pdf  |u http://ri.agro.uba.ar/files/download/articulo/2019komatsu.pdf  |x ARTI201911 
856 |u http://www.pnas.org/  |z LINK AL EDITOR 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG