Phantom epistasis in genomic selection on the predictive ability of epistatic models

Genomic selection uses whole-genome marker models to predict phenotypes or genetic values for complex traits. Some of these models fit interaction terms between markers, and are therefore called epistatic. The biological interpretation of the corresponding fitted effects is not straightforward and t...

Descripción completa

Detalles Bibliográficos
Otros Autores: Schrauf, Matías Florián, Martini, Johannes W. R., Simianer, Henner, Campos, Gustavo de los, Cantet, Rodolfo Juan Carlos, Freudenthal, Jan, Korte, Arthur, Munilla Leguizamón, Sebastián
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/download/articulo/2020schrauf.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03681cab a22004577a 4500
001 20220317144404.0
003 AR-BaUFA
005 20250307193840.0
008 220317t2020 xxkd||||o|||| 00| 0 eng d
999 |c 54536  |d 54536 
999 |d 54536 
999 |d 54536 
999 |d 54536 
999 |d 54536 
022 |a 2160-1836 
024 |a 10.1534/g3.120.401300 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a Phantom epistasis in genomic selection  |b on the predictive ability of epistatic models 
520 |a Genomic selection uses whole-genome marker models to predict phenotypes or genetic values for complex traits. Some of these models fit interaction terms between markers, and are therefore called epistatic. The biological interpretation of the corresponding fitted effects is not straightforward and there is the threat of overinterpreting their functional meaning. Here we show that the predictive ability of epistatic models relative to additive models can change with the density of the marker panel. In more detail, we show that for publicly available Arabidopsis and rice datasets, an initial superiority of epistatic models over additive models, which can be observed at a lower marker density, vanishes when the number of markers increases. We relate these observations to earlier results reported in the context of association studies which showed that detecting statistical epistatic effects may not only be related to interactions in the underlying genetic architecture, but also to incomplete linkage disequilibrium at low marker density (“Phantom Epistasis”). Finally, we illustrate in a simulation study that due to phantom epistasis, epistatic models may also predict the genetic value of an underlying purely additive genetic architecture better than additive models, when the marker density is low. Our observations can encourage the use of genomic epistatic models with low density panels, and discourage their biological over-interpretation. 
650 |2 Agrovoc  |9 26 
653 |a EPISTASIS 
653 |a ADDITIVE EFFECTS 
653 |a GENOMICS 
653 |a BREEDING 
653 |a GENPRED 
653 |a GENOMIC PREDICTION 
653 |a SHARED DATA RESOURCES 
700 1 |a Schrauf, Matías Florián  |u Universidad de Buenos Aires. Facultad de Agronomía. Buenos Aires, Argentina.  |9 37966 
700 1 |a Martini, Johannes W. R.  |u International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico.  |9 67704 
700 1 |a Simianer, Henner  |u University of Göttingen. Department of Animal Sciences. Center for Integrated Breeding Research. Germany.  |9 67802 
700 1 |9 73486  |a Campos, Gustavo de los  |u Michigan State University. Department of Epidemiology and Biostatistics. East Lansing, Michigan, EEUU. 
700 1 |a Cantet, Rodolfo Juan Carlos  |u Universidad de Buenos Aires. Facultad de Agronomía. Buenos Aires, Argentina.  |u CONICET. Buenos Aires, Argentina.  |9 12817 
700 1 |a Freudenthal, Jan  |u University of Würzburg. Center for Computational and Theoretical Biology (CCTB). Germany.  |9 73487 
700 1 |a Korte, Arthur  |u University of Würzburg. Center for Computational and Theoretical Biology (CCTB). Germany.  |9 73488 
700 1 |9 13019  |a Munilla Leguizamón, Sebastián  |u Universidad de Buenos Aires. Facultad de Agronomía. Buenos Aires, Argentina.  |u CONICET. Buenos Aires, Argentina. 
773 0 |t G3: Genes, Genomes, Genetics  |g Vol.10, no.9 (2020), p.3137-3145, grafs. 
856 |f 2020schrauf  |i En internet  |q application/pdf  |u http://ri.agro.uba.ar/files/download/articulo/2020schrauf.pdf  |x ARTI202204 
856 |u http://www.g3journal.org/  |z LINK AL EDITOR 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG