Impacts of vegetative and reproductive plasticity associated with tillering in maize crops in low - yielding environments a physiological framework

Selection for maize (Zea mays L.) grain yield in high - yielding environments at high population densities has favored a compact phenotype tolerant to crowding stress, bearing a single, well-grained ear. However, by contributing to vegetative and reproductive plasticity (i.e., multiple shoots and e...

Descripción completa

Detalles Bibliográficos
Otros Autores: Rotili, Diego Hernán, Sadras, Victor Oscar, Abeledo, Leonor Gabriela, Ferreyra, Juan Matías, Micheloud, José Roberto, Duarte, Gustavo, Girón, Paula, Ermácora, Matías, Maddonni, Gustavo Angel
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2021rotili.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05883cab a22004817a 4500
001 20220621124225.0
003 AR-BaUFA
005 20230912103052.0
008 220621t2021 ne d||||o|||| 00| 0 eng d
999 |c 54727  |d 54727 
999 |d 54727 
999 |d 54727 
999 |d 54727 
999 |d 54727 
022 |a 0378-4290 
024 |a 10.1016/j.fcr.2021.108107 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 |a Impacts of vegetative and reproductive plasticity associated with tillering in maize crops in low - yielding environments  |b a physiological framework 
520 |a Selection for maize (Zea mays L.) grain yield in high - yielding environments at high population densities has favored a compact phenotype tolerant to crowding stress, bearing a single, well-grained ear. However, by contributing to vegetative and reproductive plasticity (i.e., multiple shoots and ears per plant, respectively), tillering may be adaptive in environments with low and variable availability of resources, chiefly water and nutrients, where crops are sown at low plant population density. In this work we present a robust, new conceptual framework for vegetative and reproductive plasticity in maize with direct agronomic applications, combining original data from new experiments and data reviewed from the literature. First, we describe production systems where tillering in maize would be relevant in terms of grain yield. Next, we discuss possible masked effects of genetic selection at high plant densities on tillering and present novel experimental results showing genotypic variation of tillering in modern maize hybrids and genotype x environment x management effects (plant density x location x sowing date) on tillering expression. We follow with a two-part framework to analyze tillering and prolificacy. In the first part (from axillary buds to tillers), we integrate the early effects of the light environment (through photomorphogenesis) and carbon balance on tillering emission, and discuss the environmental factors (temperature, photoperiod, radiation, water, nitrogen) that modulate tiller emission and tiller growth. In the second part (from tillers to kernels), we summarize the functional relationships governing kernel set on the ears of main shoot (apical and sub-apical ears) and tillers, focusing on the growth rate of shoot cohorts, rather than the whole plant. We then provide examples of the diverse patterns of ontribution of multiple shoots to crop grain yield for maize husbandry in low-yielding environments. Finally, we address the effect of tillering on resource capture and use efficiency of maize crops by discussing its relationship with biomass and grain yield and provide supportive experimental data. We conclude with identification of knowledge gaps leading to testable hypotheses. 
650 |2 Agrovoc  |9 26 
653 |a ENVIRONMENTAL CONTROL 
653 |a REPRODUCTIVE PLASTICITY 
653 |a YIELD 
653 |a PLANT POPULATION DENSITY 
653 |a LOW INPUT FARMING 
653 |a RADIATION 
653 |a NITROGEN 
653 |a WATER 
700 1 |a Rotili, Diego Hernán  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Cerealicultura. Buenos Aires, Argentina.  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |9 37794 
700 1 |a Sadras, Victor Oscar  |u The University of Adelaide. South Australian Research and Development Institute. School of Agriculture & Wine. Waite Research Precinct, Australia.  |9 714 
700 1 |9 11135  |a Abeledo, Leonor Gabriela  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Cerealicultura. Buenos Aires, Argentina.  |u CONICET - Universidad de Buenos Aires. Buenos Aires, Argentina. 
700 1 |9 68336  |a Ferreyra, Juan Matías  |u Bayer Crop Science, Market Development. Pergamino, Buenos Aires, Argentina. 
700 1 |a Micheloud, José Roberto  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Cerealicultura. Buenos Aires, Argentina.  |u Asociación Argentina de Consorcios Regionales de Experimentación Agrícola (AACREA). Buenos Aires, Argentina.  |u PLEXAGRO. Buenos Aires, Argentina.  |9 14610 
700 1 |a Duarte, Gustavo  |u Grupo Bermejo, Buenos Aires, Argentina.  |9 73772 
700 1 |a Girón, Paula  |u Instituto Nacional de Tecnología Agropecuaria (INTA). Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria General Villegas (EEA General Villegas). Buenos Aires, Argentina.  |9 72289 
700 1 |a Ermácora, Matías  |u Asociación Argentina de Consorcios Regionales de Experimentación Agrícola (AACREA). Buenos Aires, Argentina.  |9 67395 
700 1 |a Maddonni, Gustavo Angel  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Cerealicultura. Buenos Aires, Argentina.  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |9 7271 
773 0 |t Field crops research  |w (AR-BaUFA)SECS000083  |g Vol.265 (2021), art.108107, 14 p., grafs., tbls. 
856 |f 2021rotili  |i en reservorio  |q application/pdf  |u http://ri.agro.uba.ar/files/intranet/articulo/2021rotili.pdf  |x ARTI202206 
856 |u http://www.elsevier.com/  |z LINK AL EDITOR 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG