Forward Error Correction Based On Algebraic-Geometric Theory

This book covers the design, construction, and implementation of algebraic-geometric codes from Hermitian curves. Matlab simulations of algebraic-geometric codes and Reed-Solomon codes compare their bit error rate using different modulation schemes over additive white Gaussian noise channel model. S...

Descripción completa

Detalles Bibliográficos
Autor principal: A. Alzubi, Jafar
Otros Autores: A. Alzubi, Omar, M. Chen, Thomas
Formato: Libro electrónico
Lenguaje:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Colección:SpringerBriefs in Electrical and Computer Engineering,
Materias:
Acceso en línea:http://dx.doi.org/10.1007/978-3-319-08293-6
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:This book covers the design, construction, and implementation of algebraic-geometric codes from Hermitian curves. Matlab simulations of algebraic-geometric codes and Reed-Solomon codes compare their bit error rate using different modulation schemes over additive white Gaussian noise channel model. Simulation results of Algebraic-geometric codes bit error rate performance using quadrature amplitude modulation (16QAM and 64QAM) are presented for the first time and shown to outperform Reed-Solomon codes at various code rates and channel models. The book proposes algebraic-geometric block turbo codes. It also presents simulation results that show an improved bit error rate performance at the cost of high system complexity due to using algebraic-geometric codes and Chase-Pyndiahâ_Ts algorithm simultaneously. The book proposes algebraic-geometric irregular block turbo codes (AG-IBTC) to reduce system complexity. Simulation results for AG-IBTCs are presented for the first time.
Descripción Física:xii, 70 p. : il.
ISBN:9783319082936
ISSN:2191-8112