Combinatorial properties and further facets of maximum edge subgraph polytopes

Given a graph G and an integer k, the maximum edge subgraph problem consists in finding a k-vertex subset of G such that the number of edges within the subset is maximum. This NP-hard problem arises in the analysis of cohesive subgroups in social networks. In this work we study the polytope P(G,k) a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Marenco, J.
Otros Autores: Saban, D.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2011
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:Given a graph G and an integer k, the maximum edge subgraph problem consists in finding a k-vertex subset of G such that the number of edges within the subset is maximum. This NP-hard problem arises in the analysis of cohesive subgroups in social networks. In this work we study the polytope P(G,k) associated with a straightforward integer programming formulation of the maximum edge subgraph problem. We characterize the graph generated by P(G,k) and give a tight bound on its diameter. We give a complete description of P(K1n,k), where K1n is the star on n+1 vertices, and we conjecture a complete description of P(mK2,k), where mK2 is the graph composed by m disjoint edges. Finally, we introduce three families of facet-inducing inequalities for P(G,k), which generalize known families of valid inequalities for this polytope. © 2011 Elsevier B.V.
Bibliografía:Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T., Greedily Finding Dense Subgraphs (2000) Journal of Algorithms, 34, pp. 203-221
Asahiro, Y., Hassin, R., Iwama, K., Complexity of finding dense subgraphs (2002) Discrete Applied Mathematics, 121, pp. 15-26
Billionnet, A., Different formulations for solving the heaviest k-subgraph problem (2005) Information Systems and Operational Research, 43 (3), pp. 171-186
Feige, U., Kortsarz, G., Peleg, D., The Dense k-Subgraph Problem (2001) Algorithmica, 29, pp. 410-421
Han, Q., Ye, T., Zhang, J., Approximation of Dense-k-Subgraph, Working Paper, Department of Management Sciences (2000), Henry B. Tippie College of Business, The University of Iowa; Roupin, F., Billionnet, A., A deterministic approximation algorithm for the Densest k-Subgraph Problem (2008) International Journal of Operational Research, 3 (3), pp. 301-314
Bonomo, F., Marenco, J., Saban, D., Stier-Moses, N., A polyhedral study of the maximum edge subgraph problem (2009) Electronic Notes in Discrete Mathematics, 35, pp. 197-202
Bonomo, F., Marenco, J., Saban, D., Stier-Moses, N., A polyhedral study of the maximum edge subgraph problem, Submitted to Discrete Applied Mathematics
ISSN:15710653
DOI:10.1016/j.endm.2011.05.052