Formation of redox-active self-assembled polyelectrolyte-surfactant complexes integrating glucose oxidase on electrodes: Influence of the self-assembly solvent on the signal generation

In this work the effects of the self-assembly solvent on the structure and electrochemical behavior of redox-active polyelectrolyte-surfactant complexes cast on electrode supports from aqueous and DMF solutions are presented. The complex studied is formed by complexation of osmium complex-modified p...

Descripción completa

Detalles Bibliográficos
Autor principal: Cortez, M.L
Otros Autores: Ceolín, Marcelo Raúl, Azzaroni, O., Battaglini, Fernando
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15875caa a22014777a 4500
001 PAPER-13215
003 AR-BaUEN
005 20241209083659.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84932608452 
024 7 |2 cas  |a dodecyl sulfate, 151-41-7; glucose, 50-99-7, 84778-64-3; glucose oxidase, 9001-37-0; osmium, 7440-04-2; Electrolytes; Glucose Oxidase; Surface-Active Agents 
030 |a BIOEF 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Cortez, M.L. 
245 1 0 |a Formation of redox-active self-assembled polyelectrolyte-surfactant complexes integrating glucose oxidase on electrodes: Influence of the self-assembly solvent on the signal generation 
260 |b Elsevier  |c 2015 
270 1 0 |m Azzaroni, O.; Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, Argentina 
504 |a Stuart, M.A.C., Huck, W.T.S., Genzer, J., Müller, M., Ober, C., Stamm, M., Sukhorukov, G.B., Minko, S., Emerging applications of stimuli-responsive polymer materials (2010) Nat. Mater., 9, pp. 101-113 
504 |a Katz, E., Minko, S., Halámek, J., MacVittie, K., Yancey, K., Electrode interfaces switchable by physical and chemical signals for biosensing, biofuel, and biocomputing applications (2013) Anal. Bioanal. Chem., 405, pp. 3659-3672 
504 |a Beitollahi, H., Sheikhshoaie, I., Selective voltammetric determination of norepinephrine in the presence of acetaminophen and folic acid at a modified carbon nanotube paste electrode (2011) J. Electroanal. Chem., 661, pp. 336-342 
504 |a Beitollahi, H., Sheikhshoaie, I., Electrocatalytic and simultaneous determination of isoproterenol, uric acid and folic acid at molybdenum (VI) complex-carbon nanotube paste electrode (2011) Electrochim. Acta, 56, pp. 10259-10263 
504 |a Rubianes, M.D., Rivas, G.A., Dispersion of multi-wall carbon nanotubes in polyethylenimine: a new alternative for preparing electrochemical sensors (2007) Electrochem. Commun., 9, pp. 480-484 
504 |a Cortez, M.L., Ceolín, M., Azzaroni, O., Battaglini, F., Electrochemical sensing platform based on polyelectrolyte-surfactant supramolecular assemblies incorporating carbon nanotubes (2011) Anal. Chem., 83, pp. 8011-8018 
504 |a Molaakbari, E., Mostafavi, A., Beitollahi, H., Alizadeh, R., Synthesis of ZnO nanorods and their application in the construction of a nanostructure-based electrochemical sensor for determination of levodopa in the presence of carbidopa (2014) Analyst, 139, pp. 4356-4364 
504 |a Narang, J., Malhotra, N., Singh, G., Pundir, C.S., Electrochemical impedimetric detection of anti-HIV drug taking gold nanorods as a sensing interface (2015) Biosens. Bioelectron., 66, pp. 332-337 
504 |a Zhang, X., Zhang, F., Zhang, H., Shen, J., Han, E., Dong, X., Functionalized gold nanorod-based labels for amplified electrochemical immunoassay of E. coli as indicator bacteria relevant to the quality of dairy product (2015) Talanta, 132, pp. 600-605 
504 |a Cortez, M.L., Marmisollé, W., Pallarola, D., Pietrasanta, L.I., Murgida, D.H., Ceolín, M., Azzaroni, O., Battaglini, F., Effect of gold nanoparticles on the structure and electron-transfer characteristics of glucose oxidase redox polyelectrolyte-surfactant complexes (2014) Chem. Eur. J., 20, pp. 13366-13374 
504 |a Peinetti, A.S., Ceretti, H., Mizrahi, M., González, G.A., Ramírez, S.A., Requejo, F.G., Montserrat, J.M., Battaglini, F., Confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors (2015) Nanoscale, 7, pp. 7763-7769 
504 |a Yue, Z., Lisdat, F., Parak, W.J., Hickey, S.G., Tu, L., Sabir, N., Dorfs, D., Bigall, N.C., Quantum-dot-based photoelectrochemical sensors for chemical and biological detection (2013) ACS Appl. Mater. Interfaces, 5, pp. 2800-2814 
504 |a Golub, E., Pelossof, G., Freeman, R., Zhang, H., Willner, I., Electrochemical, pho-toelectrochemical, and surface plasmon resonance detection of cocaine using supramolecular aptamer complexes and metallic or semiconductor nanoparticles (2009) Anal. Chem., 81, pp. 9291-9298 
504 |a Lutkenhaus, J.L., Hammond, P.T., Electrochemically enabled polyelectrolyte multilayer devices: from fuel cells to sensors (2007) Soft Matter, 3, pp. 804-816 
504 |a Cortez, M.L., Pallarola, D., Ceolín, M., Azzaroni, O., Battaglini, F., Ionic self-assembly of electroactive biorecognizable units: electrical contacting of redox glycoenzymes made easy (2012) Chem. Commun., 48, pp. 10868-10870 
504 |a Calvo, E.J., Flexer, V., Tagliazucchi, M., Scodeller, P., Effects of the nature and charge of the topmost layer in layer by layer self assembled amperometric enzyme electrodes (2010) Phys. Chem. Chem. Phys., 12, pp. 10033-10039 
504 |a Betscha, C., Ball, V., Large distribution in the Donnan potential of hexacyanoferrate anions permeating in and partially dissolving (PAH-HA)n polyelectrolyte multilayer films (2011) Soft Matter, 7, pp. 1819-1829 
504 |a Tagliazucchi, M., Williams, F.J., Calvo, E.J., Metal-ion responsive redox polyelectrolyte multilayers (2010) Chem. Commun., 46, pp. 9004-9006 
504 |a Massafera, M.P., de Torresi, S.I.C., Urea amperometric biosensors based on nanostructured polypyrrole (2011) Electroanalysis, 23, pp. 2534-2540 
504 |a Hasan, K., Patil, S.A., Górecki, K., Leech, D., Hägerhäll, C., Gorton, L., Electrochemical communication between heterotrophically grown Rhodobacter capsulatus with electrodes mediated by an osmium redox polymer (2013) Bioelectrochemistry, 93, pp. 30-36 
504 |a Mano, N., Mao, F., Heller, A., A miniature biofuel cell operating in a physiological buffer (2002) J. Am. Chem. Soc., 124, pp. 12962-12963 
504 |a Taylor, A.D., Michel, M., Sekol, R.C., Kizuka, J.M., Kotov, N.A., Thompson, L.T., Fuel cell membrane electrode assemblies fabricated by layer-by-layer electrostatic self-assembly techniques (2008) Adv. Funct. Mater., 18, pp. 3003-3009 
504 |a Koodlur, L.S., Layer-by-layer self assembly of a water-soluble phthalocyanine on gold. Application to the electrochemical determination of hydrogen peroxide (2013) Bioelectrochemistry, 91, pp. 21-27 
504 |a Wu, B.Y., Hou, S.H., Yin, F., Zhao, Z.X., Wang, Y.Y., Wang, X.S., Chen, Q., Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode (2007) Biosens. Bioelectron., 22, pp. 2854-2860 
504 |a Iost, R.M., Crespilho, F.N., Layer-by-layer self-assembly and electrochemistry: applications in biosensing and bioelectronics (2012) Biosens. Bioelectron., 31, pp. 1-10 
504 |a Heller, A., Feldman, B., Electrochemistry in diabetes management (2010) Acc. Chem. Res., 43, pp. 963-973 
504 |a Merchant, S.A., Glatzhofer, D.T., Schmidtke, D.W., Effects of electrolyte and pH on the behavior of cross-linked films of ferrocene-modified poly(ethylenimine) (2007) Langmuir, 23, pp. 11295-11302 
504 |a Cortez, M.L., González, G.A., Battaglini, F., An electroactive versatile matrix for the construction of sensors (2011) Electroanalysis, 23, pp. 156-160 
504 |a Cortez, M.L., Pallarola, D., Ceolín, M., Azzaroni, O., Battaglini, F., Electron transfer properties of dual self-assembled architectures based on specific recognition and electrostatic driving forces: its application to control substrate inhibition in horseradish peroxidase-based sensors (2013) Anal. Chem., 85, pp. 2414-2422 
504 |a Peinetti, A.S., Méndez De Leo, L.P., González, G.A., Battaglini, F., A polyelectrolyte-surfactant complex as support layer for membrane functionalization (2012) J. Colloid Interface Sci., 386, pp. 44-50 
504 |a Bazylińska, U., Skrzela, R., Piotrowski, M., Szczepanowicz, K., Warszyński, P., Wilk, K.A., Influence of dicephalic ionic surfactant interactions with oppositely charged polyelectrolyte upon the in vitro dye release from oil core nanocapsules (2012) Bioelectrochemistry, 87, pp. 147-153 
504 |a Liu, J.Y., Wang, J.G., Li, N., Zhao, H., Zhou, H.J., Sun, P.C., Chen, T.H., Polyelectrolyte-surfactant complex as a template for the synthesis of zeolites with intracrystalline mesopores (2012) Langmuir, 28, pp. 8600-8607 
504 |a Cortez, M.L., González, G.A., Ceolín, M., Azzaroni, O., Battaglini, F., Self-assembled redox polyelectrolyte-surfactant complexes: nanostructure and electron transfer characteristics of supramolecular films with built-in electroactive chemical functions (2014) Electrochim. Acta, 118, pp. 124-129 
504 |a Danilowicz, C., Corton, E., Battaglini, F., Osmium complexes bearing functional groups: building blocks for integrated chemical systems (1998) J. Electroanal. Chem., 445, pp. 89-94 
504 |a Cortez, M.L., Cukierman, A.L., Battaglini, F., Surfactant presence in a multilayer polyelectrolyte-enzyme system improves its catalytic response (2009) Electrochem. Commun., 11, pp. 990-993 
504 |a Flexer, V., Forzani, E.S., Calvo, E.J., Ludueña, S.J., Pietrasanta, L.I., Structure and thickness dependence of "molecular wiring" in nanostructured enzyme multilayers (2006) Anal. Chem., 78, pp. 399-407 
504 |a Zafar, M.N., Wang, X., Sygmund, C., Ludwig, R., Leech, D., Gorton, L., Electron-transfer studies with a new flavin adenine dinucleotide dependent glucose dehydrogenase and osmium polymers of different redox potentials (2012) Anal. Chem., 84, pp. 334-341 
504 |a Ó Conghaile, P., Pöller, S., MacAodha, D., Schuhmann, W., Leech, D., Coupling osmium complexes to epoxy-functionalised polymers to provide mediated enzyme electrodes for glucose oxidation (2013) Biosens. Bioelectron., 43, pp. 30-37 
504 |a Mao, F., Mano, N., Heller, A., Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme "wiring" hydrogels (2003) J. Am. Chem. Soc., 125, pp. 4951-4957 
504 |a Jones, M.N., Manley, P., Wilkinson, A., The dissociation of glucose oxidase by sodium n-dodecyl sulphate (1982) Biochem. J., 203, pp. 285-291 
506 |2 openaire  |e Política editorial 
520 3 |a In this work the effects of the self-assembly solvent on the structure and electrochemical behavior of redox-active polyelectrolyte-surfactant complexes cast on electrode supports from aqueous and DMF solutions are presented. The complex studied is formed by complexation of osmium complex-modified polyallylamine (OsPA) with dodecyl sulfate (DS) surfactants. The structure of the films was characterized by GISAXS, showing that films present a lamellar mesostructure. However, when they are exposed to humid environments, films cast from aqueous solutions (OsPA-DSaq) undergo a structural transition that ultimately leads to the disappearance of the mesostructural order. On the other hand, OsPA-DS films cast from DMF solutions (OsPA-DSorg) revealed no significant changes upon exposure to humid environments. Both types of films were exposed to glucose oxidase (GOx), showing similar adsorption characteristics. Notwithstanding these similarities in GOx and content, OsPA-DSaq films revealed a more sensitive bioelectrocatalytical response to glucose as compared to OsPA-DSorg films. © 2015 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: Centro Interdisciplinario de Nanociencia y Nanotecnología 
536 |a Detalles de la financiación: Universidad de Buenos Aires, X0513 
536 |a Detalles de la financiación: Laboratório Nacional de Luz Síncrotron, LNLS, XRD2-14358, XRD2-13391, XRD2-11639, SXS-11642 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2011-0406, PICT 2013-0905, PPL 2011-003, PICT 2010-2554 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Max-Planck-Gesellschaft 
536 |a Detalles de la financiación: The authors acknowledge the financial support from Universidad de Buenos Aires ( X0513 ), ANPCyT ( PICT 2011-0406 , PICT 2010-2554 , PICT 2013-0905 , and PPL 2011-003 ), Centro Interdisciplinario de Nanociencia y Nanotecnología ( CINN-ANPCyT-Argentina ) and Max-Planck-Gesellschaft ( Max Planck Partner Group for Functional Supramolecular Bioconjugates, INIFTA/MPIP ). O.A. and M.C. gratefully acknowledge the Laboratório Nacional de Luz Síncrotron ( LNLS, Campinas — Brazil ) for financial support and granting access to synchrotron facilities (XRD2-13391; XRD2-11639, XRD2-14358 and SXS-11642). M.L.C. acknowledges CONICET for a postdoctoral fellowship. M.C., O.A. and F.B. are CONICET fellows. 
593 |a INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina 
593 |a Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, 1900, Argentina 
690 1 0 |a ELECTROCHEMICAL ELECTRODES 
690 1 0 |a ELECTRODES 
690 1 0 |a GLUCOSE 
690 1 0 |a GLUCOSE SENSORS 
690 1 0 |a POLYELECTROLYTES 
690 1 0 |a REDOX REACTIONS 
690 1 0 |a SELF ASSEMBLY 
690 1 0 |a SURFACE ACTIVE AGENTS 
690 1 0 |a ADSORPTION CHARACTERISTIC 
690 1 0 |a ELECTROCHEMICAL BEHAVIORS 
690 1 0 |a GLUCOSE OXIDASES (GOX) 
690 1 0 |a HUMID ENVIRONMENT 
690 1 0 |a MESOSTRUCTURAL ORDERING 
690 1 0 |a POLYELECTROLYTE-SURFACTANT COMPLEXES 
690 1 0 |a SIGNAL GENERATION 
690 1 0 |a STRUCTURAL TRANSITIONS 
690 1 0 |a GLUCOSE OXIDASE 
690 1 0 |a DODECYL SULFATE 
690 1 0 |a GLUCOSE 
690 1 0 |a GLUCOSE OXIDASE 
690 1 0 |a OSMIUM 
690 1 0 |a POLYELECTROLYTE 
690 1 0 |a SOLVENT 
690 1 0 |a SURFACTANT 
690 1 0 |a ELECTROLYTE 
690 1 0 |a SURFACTANT 
690 1 0 |a ADSORPTION 
690 1 0 |a AQUEOUS SOLUTION 
690 1 0 |a ARTICLE 
690 1 0 |a CHEMICAL STRUCTURE 
690 1 0 |a COMPLEX FORMATION 
690 1 0 |a COMPOSITE MATERIAL 
690 1 0 |a CONCENTRATION (PARAMETERS) 
690 1 0 |a CONTACT ANGLE 
690 1 0 |a ELECTROCHEMICAL ANALYSIS 
690 1 0 |a ELECTRODE 
690 1 0 |a ELECTRON TRANSPORT 
690 1 0 |a EXPOSURE 
690 1 0 |a GLUCOSE OXIDATION 
690 1 0 |a SYNTHESIS 
690 1 0 |a CHEMISTRY 
690 1 0 |a ELECTRODE 
690 1 0 |a OXIDATION REDUCTION REACTION 
690 1 0 |a ELECTRODES 
690 1 0 |a ELECTROLYTES 
690 1 0 |a GLUCOSE OXIDASE 
690 1 0 |a OXIDATION-REDUCTION 
690 1 0 |a SURFACE-ACTIVE AGENTS 
700 1 |a Ceolín, Marcelo Raúl 
700 1 |a Azzaroni, O. 
700 1 |a Battaglini, Fernando 
773 0 |d Elsevier, 2015  |g v. 105  |h pp. 117-122  |p Bioelectrochemistry  |x 15675394  |w (AR-BaUEN)CENRE-3947  |t Bioelectrochemistry 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84932608452&doi=10.1016%2fj.bioelechem.2015.06.001&partnerID=40&md5=4f411f7dac4183a4d3a53699e9189dc8  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.bioelechem.2015.06.001  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15675394_v105_n_p117_Cortez  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15675394_v105_n_p117_Cortez  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_15675394_v105_n_p117_Cortez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion