Effects of denaturation on soy protein-xanthan interactions: Comparison of a whipping-rheological and a bubbling method

The effect of xanthan on foam formation and on physical mechanisms of destabilization involved in the breakdown of foams made from native and denatured soy protein at neutral pH was studied by a bubbling and a whipping-rheological method. Parameters describing foam formation and destabilization by l...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Carp, D.J
Otros Autores: Bartholomai, G.B, Relkin, P., Pilosofl, A.M.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2001
Materias:
PH
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:The effect of xanthan on foam formation and on physical mechanisms of destabilization involved in the breakdown of foams made from native and denatured soy protein at neutral pH was studied by a bubbling and a whipping-rheological method. Parameters describing foam formation and destabilization by liquid drainage and disproportionation obtained by the two methods showed that the addition of xanthan was accompanied by delayed rates of drainage and disproportionation and reduced foam height decay (collapse). Drainage showed the largest reduction, mainly because of the increased bulk viscosity. In the absence of xanthan, protein denaturation enhanced foam formation and stability against drainage and disproportionation, but increased the collapse of foams. In the presence of xanthan, differences in foam formation and drainage/disproportionation stability between native and denatured soy protein were greatly reduced. However, differences in foam collapse were greatly enhanced. The increased stability of foams in the presence of xanthan could not be explained purely in terms of increased aqueous phase viscosity. More specific interactions of xanthan and soy proteins at the air-water interface influencing the surface rheology, and the protein composition and aggregation, are involved. © 2001 Elsevier Science B.V.
Bibliografía:German, J.B., O'Neill, T.E., Kinsella, J.E., (1985) Food Hydrocoll., 7, p. 1
Kim, S.H., Kinsella, J.E., (1987) J. Food Sci., 52, p. 128
Yu, M.A., Damodaran, S., (1991) J. Agric. Food Chem., 39, p. 1563
Rawel, H.M., Muschiolik, G., (1994) Food Hydrocoll., 8, p. 287
Carp, D.J., Wagner, J., Bartholomai, G.B., Pilosof, A.M.R., (1997) J. Food Sci., 62, p. 1105
Wagner, J.R., Gueguen, J., (1999) J. Agric. Food Chem., 47, p. 2173
Carp, D.J., Bartholomai, G.B., Pilosof, A.M.R., (1999) Colloids Surfaces B: Biointerfaces, 12, p. 309
Glicksman, M., (1982) Food Hydrocolloids, 1. , M. Glicksman (Ed.), CRC Press, Boca Raton, FL
Yilmazer, G., Carrillo, A.R., Kokini, J., (1991) J. Food Sci., 56, p. 153
Tolstoguzov, V., (1997) Food Proteins and their Applications, , S. Damodaran, A. Paraf (Eds.), Marcel Dekker, New York, (Chapter 6)
Loisel, W., Gueguen, J., Popineau, Y., (1993) Food Proteins: Structure and Functionality, pp. 320-323. , K.D. Schwenke, R. Mothes (Eds.), VCH Publishers, New York
Carp, D.J., Bartholomai, G.B., Pilosof, A.M.R., (1997) Lebensm. Wiss. Technol., 30, p. 253
Wagner, J.R., Sorgentini, D.A., Añon, M.C., (1996) J. Agric. Food Chem., 44, p. 1881
Monsalve, A., Schechter, R., (1984) J.Colloid Interface Sci., 97, p. 327
Wright, D.J., Hemmant, W., (1987) J. Sci. Food Agric., 41, p. 361
Costell, E., Duran, L., (1979) Rev. Agroquím. Tecnol. Alimentos, 18, p. 4
Glasstone, S., (1979) Tratado de Química Física, , Aguilar, Spain, (Chapter 7)
Carp, D.J., Elizalde, B.E., Bartholomai, G.B., Pilosof, A.M.R., (1997) Engineering & Food at ICEF 7, 1, p. 69. , R. Jowitt (Ed.), Sheffield Academic Press, Sheffield
Galazka, V.B., Dickinson, E., (1995) J. Texture Stud., 26, p. 401
Pavlovskaya, G.E., Sememnova, M.G., Thzapkina, E.N., Tolstoguzov, V.B., (1993) Food Hydrocoll., 7, p. 1
Garti, N., Reichman, D., (1994) Food Hydrocoll., 8, p. 155
ISSN:09277765
DOI:10.1016/S0927-7765(01)00169-2