Fuzzy propositional logic associated with quantum computational gates

We apply residuated structures associated with fuzzy logic to develop certain aspects of information processing in quantum computing from a logical perspective. For this purpose, we introduce an axiomatic system whose natural interpretation is the irreversible quantum Poincaré structure. © 2006 Spri...

Descripción completa

Detalles Bibliográficos
Autor principal: Domenech, Graciela
Otros Autores: Freytes, H.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2006
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05682caa a22006377a 4500
001 PAPER-21898
003 AR-BaUEN
005 20250226084535.0
008 190411s2006 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33745630325 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Domenech, Graciela 
245 1 0 |a Fuzzy propositional logic associated with quantum computational gates 
260 |c 2006 
270 1 0 |m Domenech, G.; Instituto de Astronomía y Física del Espacio (IAFE), Ciudad Universitaria, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires, Argentina; email: domenech@iafe.uba.ar 
504 |a Aharonov, D., Quantum computation (1998) Annual Reviews of Computational Physics VI, , D. Stauffer (Ed.), World Scientific, Singapore 
504 |a Balbes, R., Dwinger, P., (1974) Distribuive Lattices, , University of Missouri Press, Columbia, MO 
504 |a Bennett, C.H., Logical reversibility of computation (1973) IBM Journal of Research and Development, 17, pp. 525-532 
504 |a Birkhoff, G., Von Neumann, J., The logic of quantum mechanics (1936) Annals of Mathematics, 37, pp. 823-843 
504 |a Burris, S., Sankappanavar, H.P., (1981) A Course in Universal Algebra, Graduate Text in Mathematics, 78. , Springer-Verlag, Berlin 
504 |a Cattaneo, G., Dalla Chiara, M.L., Giuntini, R., Leporini, R., An unsharp logic from quantum computation (2004) International Journal of Theoretical Physics, 43, pp. 1803-1817 
504 |a Cignoli, R., D'Ottaviano, M.I., Mundici, D., (2000) Algebraic Foundations of Many-valued Reasoning, , Kluwer, Dordrecht, The Netherlands 
504 |a Dalla Chiara, M.L., Giuntini, R., Leporini, R., (2003) Quantum Computational Logic. A Survey, , arXiv:quant-ph/030529 
504 |a Deutsch, D., Ekert, A., Lupacchini, R., (2000) Machines, Logic and Quantum Physics, , arXiv:math.HO/9911150 
504 |a Domenech, G., Freytes, H., Contextual logic for quantum systems (2005) Journal of Mathematical Physics, 46, p. 012102 
504 |a Freytes, H., Injectives in residuated algebras (2004) Algebra Univers., 51, pp. 373-393 
504 |a Gudder, S., Quantum computational logic (2002) International Journal of Theoretical Physics, 42, pp. 39-47 
504 |a Hájek, P., (1998) Metamathematics of Fuzzy Logic, , Kluwer, Dordrecht, The Netherlands 
504 |a Kowalski, T., Ono, H., Residuated lattices: An algebraic glimpse at logics without contraction (2000) Preliminary Report, , Edited by the Japan Advanced Institute of Science and Technology (JAIST) 
504 |a Quantum computation: A grand mathematical challenge for the twenty-first century and the millennium (2002) Proceedings of the Symposia in Applied Mathematics, 58. , Lomonaco, S. J., Jr. (Ed.) American Mathematical Society, Washington, DC 
504 |a Montagna, F., An algebraic approach to prepositional fuzzy logic (2000) Journal of Logic, Language and Information, 9, pp. 91-124 
504 |a Mundici, D., Riecǎn, B., Probability on MV-algebras (2002) The Handbook of Measure Theory, , Pap, E. (Ed.), North Holland, Amsterdam 
504 |a Nielsen, M.A., Chuang, I.L., (2000) Quantum Computation and Quantum Information, , Cambridge University Press, Cambridge, UK 
504 |a Pavelka, J., On fuzzy logic I, II, III (1979) Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 25, pp. 45-52 
506 |2 openaire  |e Política editorial 
520 3 |a We apply residuated structures associated with fuzzy logic to develop certain aspects of information processing in quantum computing from a logical perspective. For this purpose, we introduce an axiomatic system whose natural interpretation is the irreversible quantum Poincaré structure. © 2006 Springer Science+Business Media, Inc.  |l eng 
536 |a Detalles de la financiación: Secretaría de Ciencia y Técnica, Universidad de Buenos Aires 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PIP No 1478/01 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: This work was partially supported by the following grants: PICT 04-17687 (ANPCyT), PIP No 1478/01 (CONICET), UBACyT No. X081 and X204. 
593 |a Instituto de Astronomía y Física del Espacio (IAFE), Ciudad Universitaria, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires, Argentina 
593 |a Escuela de Filosofía, Universidad Nacional de Rosario, Entre Ríos 758, 2000 Rosario, Argentina 
593 |a Consejo Nacional de Innestigaciones Científices y Tícnices (CONICET), Argentina 
690 1 0 |a FUZZY LOGIC 
690 1 0 |a MV-ALGEBRAS 
690 1 0 |a PMV-ALGEBRAS 
690 1 0 |a QUANTUM GATES 
700 1 |a Freytes, H. 
773 0 |d 2006  |g v. 45  |h pp. 237-270  |k n. 1  |p Int. J. Theor. Phys.  |x 00207748  |w (AR-BaUEN)CENRE-5330  |t International Journal of Theoretical Physics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33745630325&doi=10.1007%2fs10773-005-9019-6&partnerID=40&md5=8b47e2232dd9a9deff21b350edd10cf6  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s10773-005-9019-6  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00207748_v45_n1_p237_Domenech  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00207748_v45_n1_p237_Domenech  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_00207748_v45_n1_p237_Domenech  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI