Characterization of porous thin films using quartz crystal shear resonators

A new model for the characterization of porous materials using quartz crystal impedance analysis is proposed. The model describes the equivalent electrical and/or mechanical impedance of the quartz crystal in contact with a finite layer of a rigid porous material which is immersed in a semi-infinite...

Descripción completa

Detalles Bibliográficos
Autor principal: Etchenique, R.
Otros Autores: Brudny, Vera Leonor
Formato: Acta de conferencia Capítulo de libro
Lenguaje:Inglés
Publicado: ACS 2000
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07484caa a22009137a 4500
001 PAPER-2351
003 AR-BaUEN
005 20241101100212.0
008 190411s2000 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0033731772 
030 |a LANGD 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Etchenique, R. 
245 1 0 |a Characterization of porous thin films using quartz crystal shear resonators 
260 |b ACS  |c 2000 
270 1 0 |m Etchenique, R.; Universidad Autonoma del Estado de, Morelos, Morelos, Mexico 
504 |a Noel, M.A., Topart, P.A., (1994) Anal. Chem., 66, p. 484 
504 |a Muramatsu, H., Kimura, K., (1992) Anal. Chem., 64, p. 2502 
504 |a Etchenique, R.A., Calvo, E.J., (1997) Anal. Chem., 69 (23), p. 4833 
504 |a Mason, W.P., Baker, W., McSkimin, H.J., Heiss, J.H., (1949) Phys. Rev., 75 (6), p. 936 
504 |a Sauerbrey, G., (1959) Z. Phys., 155, p. 206 
504 |a Nomura, T., Minemura, A., (1980) Nippon Kagaku Kaishi, p. 1621 
504 |a Konash, P.L., Bastiaans, G.J., (1980) Anal. Chem., 52, p. 1929 
504 |a Bruckenstein, S., Shay, M., (1985) J. Electroanal. Chem., 188, p. 131 
504 |a Kanazawa, K.K., Gordon, J.G., (1985) Anal. Chim. Acta, 175, p. 99 
504 |a Martin, J., Granstaff, V.E., Frye, G.C., (1991) Anal. Chem., 63, p. 2272 
504 |a Reed, C.E., Kanazawa, K.K., Kaufman, J.H., (1990) J. Appl. Phys., 68, p. 1993 
504 |a Granstaff, E., Martin, S.J., (1994) J. Appl. Phys., 75, p. 1319 
504 |a Liess, H.-D., Knezevic, A., Rother, A., Muenz, J., (1997) Faraday Discuss., 107, p. 39 
504 |a Daikhin, L., Urbakh, M., (1996) Langmuir, 12, p. 6354 
504 |a Wolff, O., Seydel, E., Johannsmann, D., (1997) Faraday Discuss., 107, p. 91 
504 |a Etchenique, R.A., Calvo, E.J., (1999) Electrochem. Commun., 1 (5), p. 167 
504 |a Ferraris, J.P., Eissa, M.M., Brotherston, I.D., Loveday, D.C., Moxey, A.A., (1998) J. Electroanal. Chem., 459 (131), p. 57 
504 |a Dinh, H.N., Ding, J., Xia, S.J., Birss, V.I., (1998) J. Electroanal. Chem., 459 (131), p. 45 
504 |a DuBois C.J., Jr., McCarley, R.L., (1998) J. Electroanal. Chem., 454, p. 99 
504 |a Topart, P.A., Noël, M.A., (1994) Anal. Chem., 66, p. 2926 
504 |a Bandey, H.L., Hillman, A.R., Brown, M.J., Martin, S.J., (1997) Faraday Discuss., 107, p. 105 
504 |a Etchenique, R., Brudny, V.L., (1999) Electrochem. Commun., 1, p. 441 
504 |a Van Dyke, K., (1925) Phys. Rev., 25, p. 895 
504 |a Sahimi, M., (1993) M. Rev. Modern Phys., 65, p. 1393 
504 |a Rubinstein, J., Torquato, S., (1989) J. Fluid Mech., 206, p. 25 
504 |a Brinkman, H.C., (1947) Appl. Sci. Res., A, 1, p. 27 
504 |a Charlaix, E., Kushnick, A.P., Stokes, J.P., (1988) Phys. Rev. Lett., 61 (14), p. 1595 
504 |a Johnson, D.L., Koplik, J., Dashen, R., (1987) J. Fluid Mech., 176, p. 379 
504 |a Knackstedt, M.A., Sahimi, M., Chan, D.Y.C., (1993) Phys. Rev. E, 47 (4), p. 2593 
504 |a Kanazawa, K.K., (1997) Faraday Discuss., 107, p. 77 
504 |a Calvo, E.J., Etchenique, R., Bartlett, P.N., Singhal, K., Santamaria, C., (1997) Faraday Discuss., 107, p. 141 
504 |a Calvo, E.J., Danilowicz, C., Etchenique, R., (1995) J. Chem. Soc., Faraday Trans., 91, p. 4083 
504 |a Beck, R., Weil, K., (1992) J. Electrochem. Soc., 139, p. 453 
504 |a Ferry, J.D., (1980) Viscoelastic Properties of Polymers, 3rd Ed., , Wiley: New York 
504 |a Etchenique, R., Weisz, A.D., (1999) J. Appl. Phys., 86 (4), p. 1994 
506 |2 openaire  |e Política editorial 
520 3 |a A new model for the characterization of porous materials using quartz crystal impedance analysis is proposed. The model describes the equivalent electrical and/or mechanical impedance of the quartz crystal in contact with a finite layer of a rigid porous material which is immersed in a semi-infinite liquid. The characteristic porosity length (ξ), layer thickness (d), liquid density (ρ), an viscosity (η) are taken into account. For films thick compared with the characteristic porosity length (d ≫ ξ), the model predicts a net increase of the area which is translated into a linear relationship between the quartz equivalent impedance Z = R + XL (XL = iωL, ω = 2πf, f being the oscillation frequency of the quartz resonator) and the ratio d/ξ. For low-viscosity Newtonian liquids, for which the velocity decay length δ = (2ωη/ρ)1/2 is much smaller than ξ, Z corresponds to the impedance of a semi-infinite liquid in contact with an increased effective quartz area which scales with the ratio d/ξ. In this case, R = XL in agreement with Kanazawa equation. For liquids of higher viscosity, the effect of the fluid trapped by the porous matrix is apparent and is reflected in the impedance, which has an imaginary part (XL) higher than its real part (R). In the limit of a very viscous liquid, the movement of the porous film is completely transferred to the liquid and all the mass moves in-phase with the quartz crystal electrode. In this limiting case the model predicts a purely inductive impedance, which corresponds to a resonant frequency in agreement with the Sauerbrey equation. The model allows us, for the first time, to explain the almost linear behavior of R vs XL along the growth process of conducting polymers, which present a well-known open fibrous structure. Films of polyaniline-polystyrenesulfonate were deposited on the quartz crystal under several conditions to test the model, and a very good agreement was found.  |l eng 
593 |a Ctro. de Invest. Químicas, Univ. Autonoma del Estado de Morelos, Av. Univ. No. 1001 Col. Chamilpa, CP 62210, Cuernavaca, Morelos, Mexico 
593 |a Facultad de Ciencias, Univ. Autonoma del Estado de Morelos, Av. Univ. No. 1001 Col. Chamilpa, CP 62210, Cuernavaca, Morelos, Mexico 
593 |a Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, CP 1428, Buenos Aires, Argentina 
593 |a Departamento de Física, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CP 1428, Buenos Aires, Argentina 
690 1 0 |a ELECTRIC PROPERTIES 
690 1 0 |a FILM GROWTH 
690 1 0 |a MATHEMATICAL MODELS 
690 1 0 |a MECHANICAL PROPERTIES 
690 1 0 |a NUMERICAL METHODS 
690 1 0 |a POROSITY 
690 1 0 |a POROUS MATERIALS 
690 1 0 |a VISCOSITY 
690 1 0 |a KANAZAWA EQUATION 
690 1 0 |a QUARTZ CRYSTAL SHEAR RESONATORS 
690 1 0 |a SAUERBREY EQUATION 
690 1 0 |a THIN FILMS 
700 1 |a Brudny, Vera Leonor 
711 2 |c Washington, DC, United States 
773 0 |d ACS, 2000  |g v. 16  |h pp. 5064-5071  |k n. 11  |p Langmuir  |x 07437463  |t Langmuir 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033731772&doi=10.1021%2fla991145q&partnerID=40&md5=453a178c4d757587216bc5f959f67483  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/la991145q  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_07437463_v16_n11_p5064_Etchenique  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07437463_v16_n11_p5064_Etchenique  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_07437463_v16_n11_p5064_Etchenique  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI