Small perturbations in a finger-tapping task reveal inherent nonlinearities of the underlying error correction mechanism

Time processing in the few hundred milliseconds range is involved in the human skill of sensorimotor synchronization, like playing music in an ensemble or finger tapping to an external beat. In finger tapping, a mechanistic explanation in biologically plausible terms of how the brain achieves synchr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bavassi, M.L
Otros Autores: Tagliazucchi, E., Laje, R.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:Time processing in the few hundred milliseconds range is involved in the human skill of sensorimotor synchronization, like playing music in an ensemble or finger tapping to an external beat. In finger tapping, a mechanistic explanation in biologically plausible terms of how the brain achieves synchronization is still missing despite considerable research. In this work we show that nonlinear effects are important for the recovery of synchronization following a perturbation (a step change in stimulus period), even for perturbation magnitudes smaller than 10% of the period, which is well below the amount of perturbation needed to evoke other nonlinear effects like saturation. We build a nonlinear mathematical model for the error correction mechanism and test its predictions, and further propose a framework that allows us to unify the description of the three common types of perturbations. While previous authors have used two different model mechanisms for fitting different perturbation types, or have fitted different parameter value sets for different perturbation magnitudes, we propose the first unified description of the behavior following all perturbation types and magnitudes as the dynamical response of a compound model with fixed terms and a single set of parameter values. © 2012 Elsevier B.V.
Bibliografía:Aschersleben, G., Temporal control of movements in sensorimotor synchronization (2002) Brain and Cognition, 48, pp. 66-79
Beudel, M., Renken, R., Leenders, K.L., de Jong, B.M., Cerebral representations of space and time (2009) NeuroImage, 44, pp. 1032-1040
Buhusi, C.V., Meck, W.H., What makes us tick? Functional and neural mechanisms of interval timing (2005) Nature Reviews Neuroscience, 6, pp. 755-765
Buonomano, D.V., Laje, R., Population clocks: Motor timing with neural dynamics (2010) Trends in Cognitive Sciences, 14, pp. 520-527
Chen, Y., Ding, M., Kelso, J.A.S., Long memory processes (1/fa type) in human coordination (1997) Physical Review Letters, 79, pp. 4501-4504
Del Olmo, M.F., Cheeran, B., Koch, G., Rothwell, J.C., Role of the cerebellum in externally paced rhythmic finger movements (2008) Journal of Neurophysiology, 98, pp. 145-152
Drake, C., Botte, M.-C., Tempo sensitivity in auditory sequences: Evidence for a multiple-look model (1993) Perception and Psychophysics, 54, pp. 277-286
Drewing, K., Aschersleben, G., Reduced timing variability during bimanual coupling: A role for sensory information (2003) The Quarterly Journal of Experimental Psychology, 56 A, pp. 329-350
Engbert, R., Krampe, R.T., Kurths, J., Kliegl, R., Synchronizing movements with the metronome: Nonlinear error correction and unstable periodic orbits (2002) Brain and Cognition, 48, pp. 107-116
Gibbs, C.B., Probability learning in step-input tracking (1965) British Journal of Psychology, 56, pp. 233-242
Gross, J., Timmermann, L., Kujala, J., Dirks, M., Schmitz, F., Salmelin, R., The neural basis of intermittent motor control in humans (2002) Proceedings of the National Academy of Science Uniteed States of America, 99, pp. 2299-2302
Haken, H., Kelso, J.A.S., Bunz, H., A theoretical model of phase transitions in human hand movements (1985) Biological Cybernetics, 51, pp. 347-356
Hary, D., Moore, G.P., Synchronizing human movement with an external clock source (1987) Biological Cybernetics, 56, pp. 305-311
Hary, D., Moore, G.P., Temporal tracking and synchronization strategies (1987) Human Neurobiology, 4, pp. 73-77
Hirsh, I.J., Auditory perception of temporal order (1959) Journal of the Acoustical Society of America, 31, pp. 759-767
Hirsh, I.J., Sherrick, C.E., Perceived order in different sense modalities (1961) Journal of Experimental Psicology, 62, pp. 423-432
Ivry, R.B., Schlerf, J.E., Dedicated and intrinsic models of time perception (2008) Trends in Cognitive Sciences, 12, pp. 273-280
Ivry, R.B., Spencer, R.M.C., The neural representation of time (2004) Current Opinion in Neurobiology, 14, pp. 225-232
Large, E.W., On synchronizing movements to music (2000) Human Movement Science, 19, pp. 527-566
Large, E.W., Fink, P., Kelso, J.A.S., Tracking simple and complex sequences (2002) Psychological Research, 66, pp. 3-17
Large, E.W., Jones, M.R., The dynamics of attending: How people track time-varying events (1999) Psychological Review, 106, pp. 119-159
Lewis, P.A., Miall, R.C., Brain activation patterns during measurements of sub- and supra-second intervals (2003) Neuropsychologia, 41, pp. 1583-1592
Loehr, J.D., Large, E.W., Palmer, C., Temporal coordination and adaptation to rate change in music performance (2011) Journal of Experimental Psychology: Human Perception and Performance, 37, pp. 1292-1309
Madison, G., Merker, B., Human sensorimotor tracking of continuous subliminal deviations from isochrony (2004) Neuroscience Letters, 370, pp. 69-73
Manto, M., Bastian, A.J., Cerebellum and the deciphering of motor coding (2007) The Cerebellum, 6, pp. 3-6
Mates, J., A model of synchronization of motor acts to a stimulus sequence: I. Timing and error corrections (1994) Biological Cybernetics, 70, pp. 463-473
Mates, J., A model of synchronization of motor acts to a stimulus sequence: I. Stability analysis, error estimation and simulations (1994) Biological Cybernetics, 70, pp. 475-484
Mauk, M.D., Buonomano, D.V., The neural basis of temporal processing (2004) Annual Review of Neuroscience, 27, pp. 307-340
McAuley, J.D., Kidd, G.R., Effect of deviations from temporal expectations on tempo discrimination of isochronous tone sequences (1998) Journal of Experimental Psicology: Human Perception and Performance, 24, pp. 1786-1800
Meck, W.H., Neuropsychology of timing and time perception (2005) Brain and Cognition, 58, pp. 1-8
Michon, J.A., (1967) Timing in temporal tracking, , van Gorcum, Assen, The Netherlands
Panda, S., Hogenesch, J.B., Kay, S.A., Circadian rhythms from flies to human (2002) Nature, 417, pp. 329-335
Praamstra, P., Turgeon, M., Hesse, C.W., Wing, A.M., Perryer, L., Neurophysiological correlates of error correction in sensorimotor-synchronization (2003) NeuroImage, 20, pp. 1283-1297
Pressing, J., Error correction processes in temporal pattern production (1998) Journal of Mathematical Psychology, 42, pp. 63-101
Pressing, J., Jolley-Rogers, G., Spectral properties of human cognition and skill (1997) Biological Cybernetics, 76, pp. 339-347
Repp, B.H., Compensation for subliminal timing perturbations in perceptual-motor synchronization (2000) Psychological Research, 63, pp. 106-128
Repp, B.H., Phase correction, phase resetting, and phase shifts after subliminal timing perturbations in sensorimotor synchronization (2001) Journal of Experimental Psychology: Human Perception and Performance, 27, pp. 600-621
Repp, B.H., Processes underlying adaptation to tempo changes in sensorimotor synchronization (2001) Human Movement Science, 20, pp. 277-312
Repp, B.H., Automaticity and voluntary control of phase correction following event onset shifts in sensorimotor synchronization (2002) Journal of Experimental Psychology: Human Perception and Performance, 28, pp. 410-430
Repp, B.H., Phase correction in sensorimotor synchronization: Nonlinearities in voluntary and involuntary responses to perturbations (2002) Human Movement Science, 21, pp. 1-37
Repp, B.H., Sensorimotor synchronization: A review of the tapping literature (2005) Psychonomic Bulletin and Review, 12, pp. 969-992
Repp, B.H., Rate limits in sensorimotor synchronization with auditory and visual sequences: The synchronization threshold and the benefits and costs of interval subdivision (2003) Journal of Motor Behavior, 4, pp. 355-370
Repp, B.H., Multiple temporal references in sensorimotor synchronization with metrical auditory sequences (2008) Psychological Research, 72, pp. 79-98
Repp, B.H., Tapping in synchrony with a perturbed metronome: The phase correction response to small and large phase shifts as a function of tempo (2011) Journal of Motor Behavior, 43, pp. 213-227
Repp, B.H., Temporal evolution of the phase correction response in synchronization of taps with perturbed two-interval rhythms (2011) Experimental Brain Research, 208, pp. 89-101
Repp, B.H., Keller, P.E., Adaptation to tempo changes in sensorimotor synchronization: Effects of intention, attention, and awareness (2004) Quarterly Journal of Experimental Psychology, 57 A, pp. 499-521
Repp, B.H., Keller, P.E., Jacoby, N., Quantifying phase correction in sensorimotor synchronization: Empirical comparison of three paradigms (2012) Acta Psychologica, 139, pp. 281-290
Schachner, A., Brady, T.F., Pepperberg, I.M., Hauser, M.D., Spontaneous motor entrainment to music in multiple vocal mimicking species (2009) Current Biology, 19, pp. 831-836
Schöner, G., Timing, clocks, and dynamical systems (2002) Brain and Cognition, 48, pp. 31-51
Schulze, H.-H., The error correction model for the tracking of a random metronome: Statistical properties and an empirical test (1992) Time, action, and cognition: Towards bridging the gap, pp. 275-286. , Kluwer, Dordrecht, F. Macar, V. Pouthas, W.J. Friedman (Eds.)
Schulze, H.-H., Cordes, A., Vorberg, D., Keeping synchrony while tempo changes: Accelerando and ritardando (2005) Music Perception, 22, pp. 461-477
Semjen, A., Schulze, H.-H., Vorberg, D., Timing precision in continuation and synchronization tapping (2000) Psychological Research, 63, pp. 137-147
Semjen, A., Vorberg, D., Schulze, H.-H., Getting synchronized with the metronome: Comparisons between phase and period correction (1998) Psychological Research, 61, pp. 44-55
Stevens, L.T., On the time-sens (1886) Mind os-XI, pp. 393-404
Thaut, M.H., Miller, R.A., Schauer, L.M., Multiple synchronization strategies in rhythmic sensorimotor tasks: phase vs period correction (1998) Biological Cybernetics, 79, pp. 241-250
Vorberg, D., Schulze, H.-H., Linear phase-correction in synchronization: predictions, parameter estimation, and simulations (2002) Journal of Mathematical Pschology, 46, pp. 56-87
Wagenmakers, E.-J., Farrell, S., Ratcliff, R., Estimation and interpretation of 1/fα noise in human cognition (2004) Psychonomic Bulletin & Review, 11, pp. 579-615
Wing, A.M., Kristofferson, A.B., Response delays and the timing of discrete motor responses (1973) Perception and Psychophysics, 14, pp. 5-12
ISSN:01679457
DOI:10.1016/j.humov.2012.06.002