A B.E.T.-like three sorption stage isotherm

The statistical B.E.T.-treatment of multimolecular sorption is extended to include three distinct sorption stages, viz. (I) the strongly sorbed monolayer, (II) the following h-1 layers, much less strongly sorbed, and (III) the remaining layers, up to infinity, of 'pure liquid' characterist...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Timmermann, E.O
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 1989
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:The statistical B.E.T.-treatment of multimolecular sorption is extended to include three distinct sorption stages, viz. (I) the strongly sorbed monolayer, (II) the following h-1 layers, much less strongly sorbed, and (III) the remaining layers, up to infinity, of 'pure liquid' characteristics. The new three sorption stages (t.s.s.) isotherm embodies the classical two-parameter B.E.T. equation [stages 1(h = 1)-III] as well as the three-parameter Guggenheim-Anderson-De Boer (G.A.B.) equation [stages I-II (h = ∞)]. The t.s.s. isotherm, which necessarily uses a fourth parameter, retains the mathematical form of the older isotherms with two correction functions determined by the new constant h (extension of stages I and II), functions which become important only at high relative activities of the sorbate. The sorption stage III is evidenced by experimental data in this region: here the G.A.B. isotherm demands that the inverse of the mass sorbed per unit mass of sorbent should be linear in p/p°, while experimentally a deviation downwards is found, which is explained by the t.s.s. isotherm. The four parameters, determined by versatile, easy to apply, graphical methods, show a certain correlation with the type of interactions characterizing the experimental systems. With longer ranged interactions the extent of the sorption stage II increases from h = 8-15 (gas/solids) to h = 15-20 (water/biopolymers) and to h = 20-25 (water/electrolytes-polyelectrolytes). The applicability range of the t.s.s. isotherm extends up to at least p/p° = 0.95.
Bibliografía:Brunauer, S., Emmet, P.H., Teller, E., (1938) J. Am. Chem. Soc., 60, pp. 309, 314
Brunauer, S., Deming, L.S., Deming, W.E., Teller, E., (1940) J. Am. Chem. Soc., 62, p. 1723
Brunauer, S., (1945) The Adsorption of Gases and Vapours, , Clarendon Press, Oxford
Hill, T.L., (1952) Adv. Catal., 4, p. 211
Gregg, S.J., Sing, K.S.W., (1967) Adsorption, Surface Area and Porosity, , Academic Press, New York
Adamson, A.W., (1970) Physical Chemistry of Surfaces, , Interscience Publ., New York
Langmuir, I., (1918) J. Am. Chem. Soc., 40, p. 1361
Anderson, R.B., (1946) J. Am. Chem. Soc., 68, p. 686
Anderson, R.B., Hall, K.W., (1948) J. Am. Chem. Soc., 70, p. 1727
De Boer, J.H., (1953) The Dynamical Character of Adsorption, , Clarendon Press, Oxford
Guggenheim, E.A., (1966) Application of Statistical Mechanicsclarendon Press, Oxford, , chap. 11
Langmuir, I., (1918) J. Am. Chem. Soc., 40, p. 1375
Van Der Berg, C., Bruin, S., (1981) Water Activity: Influence on Food Quality, 1. , ed. L. B. Rockland and G. F. StewardAcademic Press, New York
Van Der Berg, C., (1985) Properties of Water in Foods, p. 119. , ed. D. Simatos and J. L. Multon, Martinus-Nijhoff, Dordrecht
Stokes, R.H., Robinson, R.H., (1948) J. Am. Chem. Soc., 70, p. 1870
Gascoyne, P.R.C., Pethig, R., (1977) J. Chem. Soc., Faraday Trans. 1, 73, p. 171
Grigera, J.R., Berendson, H.J.C., (1979) Biopolymers, 18, p. 47
Grigera, J.R., Mogilner, I.G., (1980) Indian Chem. Engineers, 22, p. 42
Timmermann, E.O., (1970) Z. Phys. Chem. N.F., 72, p. 140
Gregor, H.P., Sundheim, B.P., Held, K.M., Waxman, M.H., (1952) J. Colloid Sci., 7, p. 511
Boyd, G.E., Soldano, B.A., (1953) Z. Electrochem., 57, p. 162
Timmermann, E.O., (1970) Z. Phys. Chem. N.F., 70, p. 195
Timmermann, E.O., (1982) J. Chem. Soc., Faraday Trans. 1, 78, p. 2619
(1980) Water in Polymers, , ed. S. P. Rowland, Am. Chem. Soc. Symposium Series No. 127, Am. Chem. Society, Washington D.C
Timmermann, E.O., Proc. 3Rd. Int. Meeting on Polymer Science and Technology, pp. 100-105. , 9-13th Nov. 1981, La Plata, Argentina
Hill, T.L., (1956) Statistical Mechanics, , McGraw-Hill, New York
Fowler, R.H., (1935) Proc. Camb. Phil. Soc. Math. Phys. Sci., 31, p. 260
Cassie, A.B.D., (1945) Trans. Faraday Soc., 41, p. 450
Hill, T.L., (1946) J. Chem. Phys., 14, p. 263
Cassel, H.M., (1944) J. Chem. Phys., 12, p. 115. , J. Phys. Chem., 1944, 48, 195
Jones, D.C., (1951) J. Chem. Soc., p. 126
, p. 200. , Ref. 7, and fig. 10 and 14; Harkins, J.W., Jura, G., (1944) J. Am. Chem. Soc., 66, p. 919. , fig. 5
Ref. 5(a), fig. 1; Whalen, J.W., (1961) J. Phys. Chem., 65, p. 1676
Bull, H.B., (1944) J. Am. Chem. Soc., 66, p. 1499
Ref. 12, table 1 and fig. 1; Robinson, R.H., Stokes, R.H., (1959) Electrolyte Solutions, p. 477. , Butterworth, London, App. 8.4, and App. 8.11, p. 510
Waxman, M.H., Sundheim, B.R., Gregor, H.P., (1953) J. Phys. Chem., 57, p. 969
Ref. 16, table 1 and fig. 1; Zettlemoyer, A.C., Micale, F.J., Klier, K., (1975) Water, a Comprehensive Treatise, 5. , ed. F. FranksPlenum Press, New York, chap. 5
ISSN:03009599
DOI:10.1039/F19898501631