Correlations between deep convection and lightning activity on a global scale

Satellite observations of cloud top temperature and lightning flash distribution are used to examine the relationship between deep convection and lightning activity over the tropical regions of the northern and southern hemispheres. In agreement with previous work, the analysis of the results shows...

Descripción completa

Detalles Bibliográficos
Autor principal: Ávila, Eldo Edgardo
Otros Autores: Burgesser, Rodrigo Exequiel, Castellano, Nesvit Edit, Collier, A.B, Compagnucci, R.H, Hughes, A.R.W
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16333caa a22014657a 4500
001 PAPER-7679
003 AR-BaUEN
005 20241206085130.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-77955660598 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Ávila, Eldo Edgardo 
245 1 0 |a Correlations between deep convection and lightning activity on a global scale 
260 |c 2010 
270 1 0 |m Ávila, E.E.; Facultad de Matemática, Astronomía y Física, IFEG, Universidad Nacional de Córdoba, CONICET, Córdoba, Argentina; email: avila@famaf.unc.edu.ar 
504 |a Anyamba, E., Williams, E., Susskind, J., Fraser-Smith, A., Fullekrug, M., The manifestation of the Madden-Julian oscillation in global deep convection and in the Schumann resonance intensity (2000) Journal of Atmospheric Science, 57, pp. 1029-1044 
504 |a Aumann, H.H., Broberg, S.D., Elliott, Gaiser, S., Gregorich, D., Three years of atmospheric infrared sounder radiometric calibration validation using sea surface temperatures (2006) Journal of Geophysical Research-Atmospheres, 111, pp. D16S90 
504 |a Aumann, H.H., Gregorich, D.T., Broberg, S.E., Elliott, D.A., Seasonal correlations of SST, water vapor, and convective activity in tropical oceans: a new hyperspectral data set for climate model testing (2007) Geophysical Research Letters, 34, pp. L15813 
504 |a Avila, E.E., Caranti, G.M., A laboratory study of static charging by fracture in ice growing by riming (1994) Journal of Geophysical Research-Atmospheres, 99, pp. 10611-10620 
504 |a Avila, E.E., Aguirre Varela, G.G., Caranti, G.M., Temperature dependence of static charging in ice growing by riming (1995) Journal of Atmospheric Science, 52, pp. 4515-4522 
504 |a Avila, E.E., Aguirre Varela, G.G., Caranti, G.M., Charging in ice-ice collisions as a function of the ambient temperature and the larger particle average temperature (1996) Journal of Geophysical Research-Atmospheres, 101, pp. 29609-29614 
504 |a Avila, E.E., Caranti, G.M., Castellano, N.E., Saunders, C.P.R., Laboratory studies of the influence of cloud droplet size on charge transfer during crystal-graupel collisions (1998) Journal of Geophysical Research-Atmospheres, 103, pp. 8985-8996 
504 |a Avila, E.E., Pereyra, R.G., Charge transfer during crystal graupel collisions for two different cloud droplet size distributions (2000) Geophysical Research Letters, 27, pp. 3837-3840 
504 |a Boccippio, D.J., Lightning scaling relations revisited (2002) Journal of Atmospheric Science, 59, pp. 1086-1104 
504 |a Bürgesser, R.E., Pereyra, R.G., Avila, E.E., Charge separation in updraft of convective regions of thunderstorm (2006) Geophysical Research Letters, 33, pp. L03808 
504 |a Carey, L.D., Rutledge, S.A., A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm (1996) Meteorology and Atmospheric Physics, 59, pp. 33-64 
504 |a Chahine, M.T., The atmospheric infrared sounder (AIRS): improving weather forecasting and providing new data on greenhouse gases (2006) Bulletin of the American Meteorological Society, 87, pp. 911-926 
504 |a Chatfield, C., (1989) The Analysis of Time Series: An Introduction,, , Chapman & Hall, New York, NY 
504 |a Christian, H.J., Blakeslee, R.J., Goodman, S.J., Mach, D.A., Stewart, M.F., Buechler, D.E., Koshak, W.J., Boccippio, D.J., (1999), http://thunder.msfc.nasa.gov/bookshelf/pubs/LIS_ICAE99_Print.pdf, The lightning imaging sensor. In: Proceedings of the 11th International Conference on Atmospheric Electricity; Christian, H.J., Global frequency and distribution of lightning as observed from space by the optical transient detector (2003) Journal of Geophysical Research, 108, p. 4005 
504 |a Chronis, T.G., Goodman, S.J., Cecil, D., Buechler, D., Robertson, F.J., Pittman, J., Global lightning activity from the ENSO perspective (2008) Geophysical Research Letters, 35, pp. L19804 
504 |a Fu, R., Del Genio, A.D., Rossow, W.B., Behavior of deep convective clouds in the tropical Pacific deduced from ISCCP radiances (1990) Journal of Climate, 3, pp. 1129-1152 
504 |a Hong, G., Heygster, G., Miao, J., Kunzi, K., Detection of tropical deep convective clouds from AMSU-B water vapor channels measurements (2005) Journal of Geophysical Research, 110, pp. D05205 
504 |a Keith, W.D., Saunders, C.P.R., Further laboratory studies of the charging of graupel during ice crystal interactions (1990) Atmospheric Research, 25 (5), pp. 445-464 
504 |a Kent, G.S., Williams, E.R., Wang, P.H., McCormick, M.P., Skeens, K.M., Surface temperature related variations in tropical cirrus clouds as measured by SAGE II (1995) Journal of Climate, 8, pp. 2577-2594 
504 |a Kulmala, M., Deep convective clouds as aerosol production engines: role of insoluble organics (2006) Journal of Geophysical Research, 111, pp. D17202 
504 |a Lhermitte, R.M., Williams, E.R., Thunderstorm electrification: a case study (1985) Journal of Geophysical Research, 90, pp. 6071-6078 
504 |a Liu, G., Curry, J.A., Sheu, R.S., Classification of clouds over the western equatorial Pacific Ocean using combined infrared and microwave satellite data (1995) Journal of Geophysical Research, 100, pp. 13811-13826 
504 |a Lyons, W.A., Nelson, T..E., Williams, E.R., Cramer, J.A., Turner, T.R., Enhanced positive cloud-to-ground lightning in thunderstorms ingesting smoke from fires (1998) Science, 282, pp. 77-80 
504 |a Madden, R.A., Julian, P.R., Description of global-scale circulation cells in the Tropics with a 40-50 day period (1972) Journal of Atmospheric Science, 29, pp. 1109-1123 
504 |a McCollum, J.R., Gruber, A., Ba, M.B., Discrepancy between gauges and satellite estimates of rainfall in equatorial Africa (2000) Journal of Applied Meteorology, 39, pp. 666-679 
504 |a Michalon, N., Nassif, A., Saouri, T., Royer, J.F., Contribution to the climatological study of lightning (1999) Geophysical Research Letters, 26, pp. 3097-3100 
504 |a Orville, R.E., Henderson, R.W., The global distribution of midnight lightning: september 1977 to august 1978 (1986) Monthly Weather Review, 114, pp. 2640-2653 
504 |a Pereyra, R.G., Avila, E.E., Castellano, N.E., Saunders, C.P.R., A laboratory study of graupel charging (2000) Journal of Geophysical Research, 105, pp. 20803-20813 
504 |a Pereyra, R.G., Bürgesser, R.E., Ávila, E.E., Charge separation in thunderstorm conditions (2008) Journal of Geophysical Research, 113, pp. D17203 
504 |a Petersen, W.A., Rutledge, S.A., Cifelli, R.C., Ferrier, B.S., Smull, B.F., Shipborne dual-Doppler operations during TOGA COARE: integrated observations of storm kinematics and electrification (1999) Bulletin of the American Meteorological Society, 80 (1), pp. 81-96 
504 |a Petersen, W.A., Christian, H.J., Rutledge, S.A., TRMM observations of the global relationship between ice water content and lightning (2005) Geophysical Research Letters, 32, pp. L14819 
504 |a Price, C., Evidence for a link between global lightning activity and upper tropospheric water vapor (2000) Nature, 406, pp. 290-293 
504 |a Price, C., Rind, D., A simple lightning parameterization for calculating global lightning distributions (1992) Journal of Geophysical Research, pp. 9919-9933 
504 |a Pruppacher, H.R., Klett, J.D., Microphysics of clouds and precipitation (1997) Atmospheric and Oceanography: Science Library, 18, p. 954. , Kluwer Acad., Dordrecht, Netherlands 
504 |a Reeve, N., Toumi, R., Lightning activity as an indicator of climate change (1999) Quarterly Journal of the Royal Meteorological Society, 125, pp. 893-903 
504 |a Reynolds, S.E., Brook, M., Gourley, M.F., Thunderstorm charge separation (1957) Journal of Meteorology, 14, pp. 426-436 
504 |a Sátori, G., Williams, E., Lemperger, I., Variability of global lightning activity on the ENSO time scale (2009) Atmospheric Research, 91, pp. 500-507 
504 |a Sátori, G., Mushtak, V., Williams, E., Schumann resonance signatures of global lightning activity. Cap 16 (2009) Lightning: Principles, Instruments and Applications, 16. , Springer 
504 |a Saunders, C.P.R., Keith, W.D., Mitzeva, R.P., The effect of liquid water on thunderstorm charging (1991) Journal of Geophysical Research, 96, pp. 11007-11017 
504 |a Saunders, C.P.R., Avila, E.E., Peck, S.L., Castellano, N.E., Aguirre Varela, G.G., A laboratory study of the effects of rime ice accretion and heating on charge transfer during ice crystal/graupel collisions (1999) Atmospheric Research, 51, pp. 99-117 
504 |a Saunders, C.P.R., Peck, S.L., Aguirre Varela, G.G., Avila, E.E., Castellano, N.E., A laboratory study of the influence of the water vapour and mixing on the charge transfer process during collisions between ice crystals and graupel (2001) Atmospheric Research, 58, pp. 187-203 
504 |a Saunders, C.P.R., Bax-Norman, H., Emersic, C., Avila, E.E., Castellano, N.E., Laboratory studies of the effect of cloud conditions on graupel/crystal charge transfer in thunderstorm electrification (2006) Quarterly Journal of the Royal Meteorological Society, pp. 2655-2676 
504 |a Takahashi, T., Riming electrification as a charge generation mechanism in thunderstorms (1978) Journal of Atmospheric Science, 35, pp. 1536-1548 
504 |a Twomey, S., Pollution and the planetary albedo (1974) Atmospheric Environment, 8, pp. 1251-1256 
504 |a Ushio, T., Heckman, S.J., Boccippio, D.J., Christian, H.J., Kawasaki, Z.-I., A survey of thunderstorm flash rates compared to cloud top height using TRMM satellite data (2001) Journal of Geophysical Research, 106 (D20), pp. 24089-24095 
504 |a Vonnegut, B., Some facts and speculations concerning the origin and role of thunderstorm electricity (1963) Meteorological Monographs, 5, pp. 224-241 
504 |a Wilks, D.S., (2006) Statistical Methods in the Atmospheric Sciences, , Elsevier Academic Press Publications, 649 
504 |a Williams, E.R., Large-scale charge separation in thunderclouds (1985) Journal of Geophysical Research, 90, pp. 6013-6025 
504 |a Williams, E.R., Global circuit response to seasonal variations in global surface air temperature (1994) Monthly Weather Review, 172, pp. 1917-1929 
504 |a Williams, E., Stanfill, S., The physical origin of the land-ocean contrast in lightning activity (2002) Comptes Rendus-Physique, 3, pp. 1277-1292 
504 |a Williams, E., Satori, G., Lightning, thermodynamic and hydrological comparison of the two tropical continental chimneys (2004) Journal of Atmospheric and Solar-Terrestrial Physics, 66, pp. 1213-1231 
504 |a Yoshida, S., Morimoto, T., Ushio, T., Kawasaki, Z., A fifth-power relationship for lightning activity from Tropical rainfall measuring mission satellite observations (2009) Journal of Geophysical Research, 114, pp. D09104 
504 |a Zipser, E.J., Deep cumulonimbus cloud systems in the tropics with and without lightning (1994) Monthly Weather Review, 122, pp. 1837-1851 
506 |2 openaire  |e Política editorial 
520 3 |a Satellite observations of cloud top temperature and lightning flash distribution are used to examine the relationship between deep convection and lightning activity over the tropical regions of the northern and southern hemispheres. In agreement with previous work, the analysis of the results shows that, in the summer of both hemispheres, the lightning activity in continental deep convective storms is more intense than that in marine deep convective storms by a factor of between 7 and 10. Furthermore, it was observed that on average the daily lightning rate per 1°×1° grid cell for the southern hemisphere (SH) is about 20% greater than that of the northern hemisphere (NH), which can be attributed to a larger fractional cover by deep convective clouds in the SH. By using a set of independent indicators, it is shown that deep convection and lightning activity over land are well correlated (with correlation coefficients of 0.8 and 0.6 for NH and SH, respectively). This suggests the capacity for observations to act as a possible method of monitoring continental deep convective clouds, which play a key role in regulating the Earth's climate. Since lightning can be monitored easily from ground networks and satellites, it could be a useful tool for validating the performance of model convective schemes and for monitoring changes in climate parameters. © 2010 Elsevier Ltd.  |l eng 
536 |a Detalles de la financiación: Consejo Nacional para Investigaciones Científicas y Tecnológicas 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Secretaría Nacional de Ciencia, Tecnología e Innovación, A0811 
536 |a Detalles de la financiación: Secretaria de Ciencia y Tecnología - Universidad Nacional de Córdoba 
536 |a Detalles de la financiación: National Research Foundation 
536 |a Detalles de la financiación: Fondo para la Investigación Científica y Tecnológica 
536 |a Detalles de la financiación: This work was supported by Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Agencia Nacional de Promoción Científica (FONCYT), Secretaría de Ciencia y Tecnología: proyecto bilateral A0811(MINCYT-NRF), and the National Research Foundation (NRF) of South Africa. 
593 |a Facultad de Matemática, Astronomía y Física, IFEG, Universidad Nacional de Córdoba, CONICET, Córdoba, Argentina 
593 |a Hermanus Magnetic Observatory, Hermanus, South Africa 
593 |a Physics Department, University of KwaZulu-Natal, Durban, South Africa 
593 |a Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a ATMOSPHERIC ELECTRICITY 
690 1 0 |a CONVECTIVE PROCESSES 
690 1 0 |a LIGHTNING 
690 1 0 |a CLIMATE PARAMETERS 
690 1 0 |a CLOUD-TOP TEMPERATURES 
690 1 0 |a CONVECTIVE PROCESSES 
690 1 0 |a CONVECTIVE STORMS 
690 1 0 |a CORRELATION COEFFICIENT 
690 1 0 |a DEEP CONVECTION 
690 1 0 |a DEEP CONVECTIVE CLOUDS 
690 1 0 |a EARTH'S CLIMATE 
690 1 0 |a FRACTIONAL COVER 
690 1 0 |a GLOBAL SCALE 
690 1 0 |a GRID CELLS 
690 1 0 |a GROUND NETWORKS 
690 1 0 |a LIGHTNING ACTIVITY 
690 1 0 |a LIGHTNING FLASHES 
690 1 0 |a MONITORING CHANGE 
690 1 0 |a NORTHERN HEMISPHERE 
690 1 0 |a SATELLITE OBSERVATIONS 
690 1 0 |a SOUTHERN HEMISPHERE 
690 1 0 |a TROPICAL REGIONS 
690 1 0 |a ATMOSPHERIC ELECTRICITY 
690 1 0 |a ATMOSPHERIC THERMODYNAMICS 
690 1 0 |a CLIMATE MODELS 
690 1 0 |a CLOUDS 
690 1 0 |a EARTH (PLANET) 
690 1 0 |a LIGHTNING PROTECTION 
690 1 0 |a NATURAL CONVECTION 
690 1 0 |a STORMS 
690 1 0 |a LIGHTNING 
700 1 |a Burgesser, Rodrigo Exequiel 
700 1 |a Castellano, Nesvit Edit 
700 1 |a Collier, A.B. 
700 1 |a Compagnucci, R.H. 
700 1 |a Hughes, A.R.W. 
773 0 |d 2010  |g v. 72  |h pp. 1114-1121  |k n. 14-15  |p J. Atmos. Sol.-Terr. Phys.  |x 13646826  |w (AR-BaUEN)CENRE-5432  |t Journal of Atmospheric and Solar-Terrestrial Physics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77955660598&doi=10.1016%2fj.jastp.2010.07.019&partnerID=40&md5=c6669b05264802c7fa74b356de0c0329  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jastp.2010.07.019  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_13646826_v72_n14-15_p1114_Avila  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13646826_v72_n14-15_p1114_Avila  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_13646826_v72_n14-15_p1114_Avila  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI