Short Models for Unit Interval Graphs

We present one more proof of the fact that the class of proper interval graphs is precisely the class of unit interval graphs. The proof leads to a new and efficient O (n) time and space algorithm that transforms a proper interval model of the graph into a unit model, where all the extremes are inte...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Lin, M.C
Otros Autores: Soulignac, F.J, Szwarcfiter, J.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:We present one more proof of the fact that the class of proper interval graphs is precisely the class of unit interval graphs. The proof leads to a new and efficient O (n) time and space algorithm that transforms a proper interval model of the graph into a unit model, where all the extremes are integers in the range 0 to O (n2), solving a problem posed by Gardi (Discrete Math., 307 (22), 2906-2908, 2007). © 2009 Elsevier B.V. All rights reserved.
Bibliografía:Bogart, K.P., West, D.B., A short proof that "proper = unit" (1999) Discrete Math., 201 (1-3), pp. 21-23
Corneil, D.G., A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs (2004) Discrete Appl. Math., 138 (3), pp. 371-379
Corneil, D.G., Kim, H., Natarajan, S., Olariu, S., Sprague, A.P., Simple linear time recognition of unit interval graphs (1995) Inform. Process. Lett., 55 (2), pp. 99-104
Gardi, F., The Roberts characterization of proper and unit interval graphs (2007) Discrete Math., 307 (22), pp. 2906-2908
Lin, M.C., Rautenbach, D., Soulignac, F.J., Szwarcfiter, J.L., Powers of Cycles, Powers of Paths and Distance Graphs (2008), Submitted; Lin, M.C., Szwarcfiter, J.L., Unit circular-arc graph representations and feasible circulations (2008) SIAM J. Discrete Math., 22, pp. 409-423
Roberts, F.S., Indifference graphs (1969) Proof Techniques in Graph Theory, pp. 139-146. , (Proc. Second Ann Arbor Graph Theory Conf., Ann Arbor, Mich., 1968)
Spinrad, J.P., (2003) Efficient graph representations, , American Mathematical Society
ISSN:15710653
DOI:10.1016/j.endm.2009.11.041