On the Minimum Sum Coloring of P 4-Sparse Graphs

In this paper, we study the minimum sum coloring (MSC) problem on P 4-sparse graphs. In the MSC problem, we aim to assign natural numbers to vertices of a graph such that adjacent vertices get different numbers, and the sum of the numbers assigned to the vertices is minimum. Based in the concept of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bonomo, F.
Otros Autores: Valencia-Pabon, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:In this paper, we study the minimum sum coloring (MSC) problem on P 4-sparse graphs. In the MSC problem, we aim to assign natural numbers to vertices of a graph such that adjacent vertices get different numbers, and the sum of the numbers assigned to the vertices is minimum. Based in the concept of maximal sequence associated with an optimal solution of the MSC problem of any graph, we show that there is a large sub-family of P 4-sparse graphs for which the MSC problem can be solved in polynomial time. Moreover, we give a parameterized algorithm and a 2-approximation algorithm for the MSC problem on general P 4-sparse graphs. © 2012 Springer Japan.
ISSN:09110119
DOI:10.1007/s00373-012-1269-5