Invertible bimodule categories over the representation category of a Hopf algebra
For any finite-dimensional Hopf algebra H we construct a group homomorphism BiGal (H) → BrPic(Rep(H)), from the group of equivalence classes of H-biGalois objects to the group of equivalence classes of invertible exact Rep(H)-bimodule categories. We discuss the injectivity of this map. We exempli...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | article |
| Lenguaje: | Inglés |
| Publicado: |
2022
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/11086/28253 https://doi.org/10.48550/arXiv.1402.2955 |
| Aporte de: |
| Sumario: | For any finite-dimensional Hopf algebra H we construct a group homomorphism
BiGal (H) → BrPic(Rep(H)), from the group of equivalence classes of H-biGalois
objects to the group of equivalence classes of invertible exact Rep(H)-bimodule
categories. We discuss the injectivity of this map. We exemplify in the case H = Tq
is a Taft Hopf algebra and for this we classify all exact indecomposable Rep(Tq)-
bimodule categories. |
|---|