Long-term power consumption demand prediction: a comparison of energy associated and bayesian modeling approach
Fil: Rodriguez Rivero, Cristian. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Ingeniería Electrónica; Argentina.
Guardado en:
| Autores principales: | Rodriguez Rivero, Cristian, Sauchelli, Victor, Patiño, Hector Daniel, Pucheta, Julian Antonio, Laboret, Sergio |
|---|---|
| Formato: | conferenceObject |
| Lenguaje: | Inglés |
| Publicado: |
2024
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/11086/551260 |
| Aporte de: |
Ejemplares similares
-
Short-term rainfall time series prediction with incomplete data
por: Rodriguez Rivero, Cristian, et al.
Publicado: (2023) -
Noisy chaotic time series forecast approximated by combining Reny's entropy with energy associated to series method: Application to rainfall series
por: Rodriguez Rivero, Cristian, et al.
Publicado: (2024) -
Energy analysis for a sustainable future : multi-scale integrated analysis of societal and ecosystem metabolism /
por: Giampietro, M. (Mario)
Publicado: (2013) -
On predicting wind power series by using BEA modified neural networks-based approach
por: Rodriguez Rivero, Cristian, et al.
Publicado: (2025) -
LSTM recurrent neural network for energy demand forecasting
por: Alarcón, Rodrigo Germán, et al.
Publicado: (2024)